期刊文献+

信息嵌入位置自适应选择的鲁棒水印算法 被引量:4

Robust watermark algorithm for adaptive choice of information embedding position
下载PDF
导出
摘要 为了更好地提高嵌入水印后的图像质量,提出了一种利用遗传算法(GA)优化支持向量回归机(SVR)的鲁棒水印算法。把经Haar小波变换后,图像子带中具有强相似性的数据作为特征向量,用于被遗传算法优化的SVR建立小波系数方向树的模型。通过比较特征向量均方差(MSE)的大小来自适应地确定水印嵌入的位置。水印的嵌入与提取是通过调整模型的预测值与目标值之间的大小来实现的。实验结果表明,所提算法对常见的图像攻击有很强的鲁棒性,而且水印图像在嵌入容量为16384比特的情况下,峰值信噪比可以达到44.15 dB。因此能够有效抵抗常见的水印攻击,在嵌入大量信息的情况下,具有很高的透明性。 To improve the quality of watermarked image, an improved robust watermark algorithm based on Support Vector Regression (SVR) and Genetic Algorithm (GA) was proposed. Following Haar wavelet transform, the wavelet coefficients which had strong similarity in image subband were adopted as feature vector, and then the SVR optimized by GA was used to build a wavelet coefficients direction tree model. The values of Mean Square Error (MSE) of the feature vector were compared to adaptively determine the information embedding position. According to the size between the prediction value and real value of the model, the watermark was embedded and extracted. The experimental results show that the proposed algorithm has strong robustness to common image attacks, even the Peak Signal to Noise Ratio (PSNR) can achieve 44.15 dB with the embed capacity of 16 384 bits. Thus, the proposed algorithm can resist watermarking attacks more effectively and it has high transparency under the situation with big capacity information embedded.
出处 《计算机应用》 CSCD 北大核心 2013年第2期438-440,446,共4页 journal of Computer Applications
基金 天津市自然科学基金资助项目(11JCZDJC16000)
关键词 数字水印 HAAR小波变换 支持向量回归机 遗传算法 digital watermark Haar wavelet transform Support Vector Regression (SVR) Genetic Algorithm (GA)
  • 相关文献

参考文献16

  • 1HU J Q, HUANG J W, HUANG D R, et al. A DWT-based fragile watermarking tolerant of JPEG compression [ C]// Proceedings of the 1st International Conference on Digital Watermarking. Berlin: Springer-Verlag, 2003:179 - 188.
  • 2BARNI M, BARTOLINI F, PIVA A. Improved wavelet-based wa- termarking through pixel-wise masking [ J]. IEEE Transactions on Image Processing, 2001, 10(5): 783-791.
  • 3李振鹏,肖华勇,张坤,赵洋.一种基于小波变换的有意义图像水印算法[J].佳木斯大学学报(自然科学版),2005,23(4):525-529. 被引量:2
  • 4贾厚林.基于Matlab的自适应图像数字水印[J].吉林工程技术师范学院学报,2006,22(3):25-29. 被引量:3
  • 5李春,黄继武.一种抗JPEG压缩的半脆弱图像水印算法[J].软件学报,2006,17(2):315-324. 被引量:40
  • 6李春花,卢正鼎.基于小波域方向树结构的图像水印算法[J].计算机工程,2007,33(19):132-133. 被引量:4
  • 7李春花,凌贺飞,卢正鼎.基于支持向量机的小波域自适应水印算法[J].华中科技大学学报(自然科学版),2007,35(10):32-34. 被引量:8
  • 8CERVANTES J, LI X O, YU W. SVM classification for large scaledata sets by considering model of classes distribution [ C]//MICAI 2007: Proceedings of the Sixth Mexican International Conference on Artificial Intelligence-Special Session. Piseataway: 1EEE, 2007: 51 -60.
  • 9YEN S H, WANG C J, SVM based watermarking technique [ J]. Tamkang Journal of Science and Engineering, 2006, 9(2) : 141 - 150.
  • 10LI C H, LU Z D, ZHOU K. An image watermarking technique based on support vector regression [ C]//ISCIT 2005 : Proceedings of the 2005 IEEE International Symposium on Communications and Information Technology. Piscataway: IEEE, 2005:183-186.

二级参考文献68

  • 1樊兴华,孙茂松.一种高性能的两类中文文本分类方法[J].计算机学报,2006,29(1):124-131. 被引量:70
  • 2李钢,王蔚,张胜.支持向量机在脑电信号分类中的应用[J].计算机应用,2006,26(6):1431-1433. 被引量:19
  • 3Fan Kefeng,Wang Meihua,Mo Wei,Zhao Xinhua.Novel copyright protection scheme for digital content[J].Journal of Systems Engineering and Electronics,2006,17(2):423-429. 被引量:3
  • 4李春花,卢正鼎.一种基于支持向量机的图像数字水印算法[J].中国图象图形学报,2006,11(9):1322-1326. 被引量:23
  • 5邵利平,覃征,衡星辰.一种基于图像置乱变换的空域图像水印算法[J].计算机工程,2007,33(2):122-124. 被引量:16
  • 6CERVANTES J, LI XIAO-OU, YU WEN. SVM classification for large data sets by considering models of classes distribution[ C]// Proceedings of the 2007 Sixth Mexican International Conference on Artificial Intelligence, Special Session. Washington, DC: IEEE Computer Society, 2007:51 - 60.
  • 7NHUNG N P, PHUONG T M. An efficient method for filtering image-based spam[ C]//Proceedings of the 2007 IEEE International Conference on Research, Innovation and Vision for the Future. [ S. l. ] : IEEE Press, 2007:96 - 102.
  • 8KIM D S, NGUYEN H-N. Genetic algorithm to improve SVM based network intrusion detection system[ C] // Proceedings of the 19th International Conference on Advanced Information Networking and Applications. Washington, DC: IEEE Computer Society, 2005:155 - 158.
  • 9DRUCKER H, WU DONG-HUI, VAONICK V N. Support vector machines for spam categorization [ J]. IEEE Transactions on Neural Networks, 1999, 10(5): 1048 -54.
  • 10VAPNIK V N. An overview of statistical learning theory [ J]. IEEE Transactions on Neural Network, 1999, 10(5) : 988 - 999.

共引文献116

同被引文献40

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部