期刊文献+

搜索引擎中基于内容的图像重排序 被引量:2

Content-based image re-ranking technology in search engine
下载PDF
导出
摘要 针对基于文本的图像搜索结果的排序不能很好满足用户查询期望的问题,提出两种基于内容的图像搜索结果重排序方法:基于相似性积分的重排序算法(SI算法)和基于Dijkstra算法的重排序算法(D算法)。这两种方法把图像作为节点,利用图像的颜色和形状特征计算图像间的相似性,并将相似性作为边的权重构建相似性图,SI算法根据每个节点图像相似性积分的大小来进行排序,D算法则利用Dijkstra算法从指定图像开始对所有图像节点进行遍历排序。实验结果表明,两种方法都能很好地改善图像搜索排序结果,其中SI算法适合使用在初始查准率在0.5~0.9的情况;而D算法不要求初始查准率,但对图像间相似性值的精确度要求高,可以用于用户指定一张查询相关图像的重排序。 As the existing text-based image search results sorting cannot meet the users' query expectations, two kinds of content-based re-ranking methods for image search results named SI ( Similarity Integral) algorithm and D (Dijkstra) algorithm were put forward. These methods treated images as nodes, used the color and shape features to calculate the similarity between images, and took the similarity as the edge's weight to construct the similarity graph. SI algorithm sorted the images according to the similarity integral of each node image, and D algorithm traversed all the images from the specified image by Dijkstra algorithm. The experimental results show that both of the methods can improve the sorting performance of the image search. In addition, SI algorithm is suitable for the situation with initial precision rate at 0.5 - 0.9, while D algorithm does not require the initial precision rate, but has high accuracy requirements of similarity value between images, and can be used to the images re-ranking queried by an specified image.
作者 谢辉 陆月明
出处 《计算机应用》 CSCD 北大核心 2013年第2期460-462,共3页 journal of Computer Applications
基金 国家863计划项目(2011AA01A205)
关键词 图像检索 重排序 图论 视觉特征 相似性 DIJKSTRA算法 image retrieval re-ranking graph theory visual features similarity I)ijkstra algorithm
  • 相关文献

参考文献12

  • 1张静,曲晓杰,冀中,苏育挺.基于内容的图像和视频搜索重排序技术综述[J].计算机工程与应用,2011,47(29):171-174. 被引量:7
  • 2JING Y S,BALUJA S. VisualRank:applying pagerank to largescale image search[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,(11):1877-1890.
  • 3YAN R,HAUPTMANN A G,JIN R. Multimedia search with pseudo-relevance feedback[A].Beilin:Springer-Verlag,2003.238-247.
  • 4YAN R,HAUPTMANN A G. Co-retrieval:a boosted reranking approach for video retrieval[J].IEE Proceedings Vision,Image,and Signal Processing,2005,(06):888-895.
  • 5NOVAK C L,SHARER S A. Anatomy of a color histogram[A].Washington,DC:IEEE Computer Society,1992.599-605.
  • 6WANG Y M,XU Z G. Image retrieval using the color approximation histogram based on rough set theory[A].2009.1-4.
  • 7JAIN A K,VAILAYA A. Image retrieval using color and shape[J].Pattern Recognition,1966,(08):1233-1244.
  • 8秦襄培;郑贤中.Matlab图像处理宝典[M]北京:电子工业出版社,2011243-248.
  • 9HAN J W;KAMBER M;范明;孟小峰.数据挖掘:概念与技术[M]北京:机械工业出版社,201244-51.
  • 10王海英;黄强;李传涛.图论算法及其Matlab实现[M]北京:北京航空航天大学出版社,201018-21.

二级参考文献38

  • 1Fan J,Shen Y,Yang C,et al.Structured max-margin learning for inter-related classifier training and multilabel image annotation[J]. IEEE Transactions on Image Processing,2011,20(3) : 837-854.
  • 2Yan R, Huet B, Sukthankar R.Large-scale multimedia retrieval and mining[J],IEEE Multimedia, 2011,18 ( 1 ) :11 - 13.
  • 3Liu Y,Mei T,Wang M,et al.Typicality-based visual search rerank- ing[J].IEEE Transactions on Circuits and Systems for Video Technology, 2010,20 ( 5 ) .. 749-755.
  • 4Yao T,Mei T,Ngo C W.Co-reranking by mutual reinforcement for image[C]//ACM International Conference on Image and Video Retrieval, Xi' an, China, 2010 : 34-41.
  • 5Natsev A, Haubold A, Tesic J, et al.Semantic concept-based query expansion and re-ranking for multimedia retrieval[C]//ACM In ternational Conference on Multimedia, New York, USA, 2007: 991-1000.
  • 6Li H,Wang M,Hua X S.A large-scale Web multimedia dataset[C]// IEEE International Conference on Data Mining Workshops, Miami, Florida, USA, 2009 : 164-169.
  • 7陈丹雯,吴玲达.一种基于互增强原则的视频检索重排序方法[c]//第三届和谐人机环境联合学术会议,济南,2007:143.150.
  • 8Liu Y,Mei T,Hua X S,et al.Leaming to video search rerank via pseudo preference feedback[C]//IEEE International Conference on Multimedia and Expo,Hannover,Germany,2008:297-300.
  • 9Vrochidis S, Kompatsiaris I, Patras I.Optimizing visual search with implicit user feedback in interactive video retrieval[C]// ACM International Conference on Image and Video Retrieval, Xi' an, China, 2010 : 274-281.
  • 10Wei S K,Zhao Y,Zhu Z F,et al.Multimodal fusion for video search reranking[J].IEEE Transactions on Knowledge and Data Engineering, 2010,22 ( 8 ) : 1191 - 1199.

共引文献6

同被引文献16

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部