期刊文献+

求解非线性Black-Scholes模型的自适应小波精细积分法 被引量:2

Adaptive Wavelet Precise Integration Method on Nonlinear Black-Scholes Equations
下载PDF
导出
摘要 针对非线性Black-Scholes方程,基于quasi-Shannon小波函数给出了一种求解非线性偏微分方程的自适应多尺度小波精细积分法.该方法首先利用插值小波理论构造了用于逼近连续函数的多尺度小波插值算子,利用该算子可以将非线性Black-Scholes方程自适应离散为非线性常微分方程组;然后将用于求解常微分方程组的精细积分法和小波变换的动态过程相结合,并利用非线性处理技术(如同伦分析技术)可有效求解非线性Black-Scholes方程.数值结果表明了该方法在数值精度和计算效率方面的优越性. This paper proposed an adaptive wavelet precise integration method (WPIM) based on quasi-Shannon func tion fornonlinear Black Scholes equations. First, an adaptive wavelet interpolation operator was constructed, which can trans form the nonlinear partial differential equations into a matrix differential equations; Next, the Precise integration method was developd to solve the nonlinear matrix differential equation, which is a new asymptotic analytical method to solve nonlinear differential equations. Third, the exact analytical solution of the system of constant coefficient and nonhomogeneous differential e quations was deduced by this method, which is simpler than the traditional methods. At last, the famous Black-Scholes model was taken as an example to test this new method. The numerical result shows that this method possesses many merits such as high numerical stability and high precision.
作者 梅树立
出处 《经济数学》 2012年第4期8-14,共7页 Journal of Quantitative Economics
基金 国家自然科学基金资助项目(41171337)
关键词 非线性Black—Scholes方程 插值小波算子 精细积分法 nonlinear Black Scholes equations wavelet interpolation operator precise integration method
  • 相关文献

参考文献15

  • 1P WILMOTT, S HOWISON, J DEWNNE. The Mathematicsof Financial Derivatives[M]. New York: Cambridge UniversityPress,1995.
  • 2F BLACK, M SCHOLES. The pricing of options and corpo-rate liabilities [J]. J Polit Econ. 1973,81 (3) : 637 - 654.
  • 3R C MERTON. Theory of rational option pricing [J]. Bell JEcon. 1973i4(l):141 - 183.
  • 4Y ZHU, X WU, I CHERN. Derivative securities and differ-ence methods[M]. New York: Springer Finance, 2004.
  • 5Y KWOK. Mathematical models of financial derivatives[M].Singapore: Springer, 1998.
  • 6李正杰,张兴永,梁岩.支付交易费的不确定波动率的欧式看跌期权定价[J].徐州师范大学学报(自然科学版),2010,28(2):35-38. 被引量:4
  • 7张卫国,史庆盛,肖炜麟.考虑支付红利的可转债模糊定价模型及其算法[J].管理科学学报,2010,13(11):86-93. 被引量:9
  • 8H E LELAND. Option pricing and replication with transac-tions costs [J]. J Finance,1985 ,40(5): 1283-1301.
  • 9P BOYLE, T VORST. Option replication in discrete time withtransaction costs [J]. J Finance 1992 ,47( 1 ) ; 271 - 93.
  • 10G BARLES.H M SONER. Option pricing with transactioncosts and a nonlinear Black-Scholes equation [ J ]. FinanceStoch. 1998,2(4):369-397.

二级参考文献63

共引文献56

同被引文献30

  • 1姜礼尚,徐承龙,任学敏,李少华等.金融衍生品定价的数学模型与案例分析[M].北京:高等教育出版社,2008.
  • 2G PESKIR , N UYS. On Asian Options of American type [C]//Exotie Option Pricing and Advanced Levy Models, Eindhoven: John Wiley, 2005: 217-235.
  • 3G PESKIR, A N SHIRYAEV. Optimal stopping and free- boundary problems[M]. Lectures in Mathematics ETH Zurich : Birkhauser, 2006.
  • 4郭宇权.金融衍生产品数学模型[M].第2版.北京:世界图书出版公司北京公司,2010:243.
  • 5Y KIFER. Game options [J]. Finance and Stochastics, 2000, 4(4) :443-463.
  • 6G PESKIR, F SAMEE. The british put option [J]. Appl Math. Finance, 2011, 18(6):537-563.
  • 7XIA, X Y ZHOU. Stock loans[J]. Mathema'dcal Finance, 2007, 17(2) :307-317.
  • 8Chi Man LEUNG, Yue Kuen KWOK. Patent Investment Games under Asymmetric Information [J], European Journal of Operational Research, 2012, 223(2):441-451.
  • 9Chi Man LEUNG, Yue Kuen KWOK. Employee stock option valuation with repricing features [J ]. Quantitative Finance, 2008, 8(6) :561-569.
  • 10T H F CHEUK, T C F VORST. Shout floors[J]. Financial engineering review, 2003,1 (2) : 15- 35.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部