期刊文献+

m维具时滞反馈非线性差分系统解的长时间状态

Large-time Behavior of Solutions for m Dimensional of Systems of Nonlinear Difference Equations with Delay Feedback
下载PDF
导出
摘要 在一类m元离散时滞差分方程神经网络模型中引入了具有明显实际意义的非线性不连续信号传输函数,并利用离散系统的解半环分析这一强有力工具,通过引入一个辅助系统,证明了该模型的每个解或者是最终周期的或者是无界的这一有趣的动力学性质. This paper proposed a discrete-time difference neural network model for m neurons with delayed feedback, and introduced a class of nonlinear discontinuous signal function. By introducing an auxiliary system and employing semicycle a nalysis as a powerful too1, it is shown that every solution of such a system is either truncated periodic or unbounded.
出处 《经济数学》 2012年第4期32-37,共6页 Journal of Quantitative Economics
关键词 离散神经网络 时滞 最终周期性 周期解 discrete time neural network delay truncated periodicity periodic solution
  • 相关文献

参考文献12

  • 1J J HOPFIELD. Neural networks and physical systems with e-mergent collective computational abilities[J]. Proc Natl AcadSci USA, 1982, 79: 2554-2558.
  • 2J J HOPFIELD. Neurons with graded response have collectivecomputational properties like those of two-state neurons[J].Proc Natl Acad Sci USA’ 1984,81:3088 - 3092.
  • 3S BUSENBERG,K L COOKE. Models of vertically transmit-ted diseases with sequential-continuous dynamics [ C ]//VLAKSHMIKANTHAN. Nonlinear Phenomena in Mathemati-cal Science. New York: Academic Press, 1982, 179 - 187.
  • 4K L COOKE, J WIENER. Retarded differential equationswith piecewise constant delays[J]. J Math Anal Appl, 1984,99: 265-297.
  • 5S M SHAH, J WIENER. Advanced differential equations withpiecewise constant argument deviations [J]. Internat J MathMath Sci, 1983, 6: 671 -703.
  • 6J WU. Introduction to neural dynamics and signal transmissiondelay[M]. Berlin: De Gruyter,2001.
  • 7Z H YUAN, L H HUANG, Y CHEN. Convergence and peri-odicity of solutions for a discrete-time network model of twoneurons[J]. Math Comput Model, 2002 ,35 : 941 - 950.
  • 8T S YI, Z ZHOU. Periodic solutions of difference equations[J]. J Math Anal Appl, 2003,286 : 220 - 229.
  • 9B X DAI, L H HUANG, X Z QIAN. Large-time dynamics ofdiscrete-time neural networks with McCulloch-Pitts nonlineari-ty[J]. Electronic J Diff Eqn, 2003, 45:1 - 8.
  • 10Y CHEN. Unboundedness and periodicity of a system of delaydifference equations[J]. Mitt Math Sem Giessenf 2002, 248 : 1-19.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部