期刊文献+

保守的第52位色氨酸突变引起的胰高血糖素样肽1受体N端片段活性丧失 被引量:1

Conserved W^(52) led to reduced binding of glucogan-like peptide 1 receptor
原文传递
导出
摘要 通过易错PCR方法建立了一个鼠肺不同长度的nGLP-1R(从第21个氨基酸开始到第145个氨基酸)的噬菌体随机突变展示肽库,通过噬菌体表面展示技术检测胰高血糖素样肽1受体N端片段(nGLP-1R)在缺失一段或两段基因后是否还具有结合Exendin-4的活性。经ELISA分析发现了一株无结合活性的突变株,命名为EP16。经测序比对,发现EP16缺失了前20个和后10个氨基酸,且第52位色氨酸突变为精氨酸。为确定EP16与Exendin-4无结合活性的原因,重新构建了无前20个和后10个氨基酸的EP16野生型及第52位色氨酸变为精氨酸的全长nGLP-1RW52R与EP16进行对比分析。结果表明,EP16的活性丧失是由保守的第52位色氨酸突变为精氨酸引起的,缺失的前20个和后10个氨基酸没有影响其生物学活性。关键位点单个氨基酸残基的突变可以改变胰高血糖素样肽1受体N端片段整个蛋白质的生物学活性。 Through phage display, we tried to find out whether the N-terminal fragment of glucogan-like peptide 1 receptor (nGLP-1R) still had binding activity to Exendin-4 after missing one or two gene segments. By error-prone PCR, We constructed a randomly mutated phage display peptide library with different length of the N-terminal (21-145 residues) extracellular domain of glucogan-like peptide 1 receptor (GLP-1R) from rat lung. A mutant named EP16 without binding activity was found by ELISA. Through sequence alignment we found that EP16 missed the first 20 and last 10 amino acids and the 52na tryptophan was mutated to arginine. In order to determine why Ep16 did not show its binding ability to Exendin-4, a wild type EP16 without the first 20 and last 10 amino acids and nGLP-1RW52R was constructed in which the 52nd tryptophan was mutated to arginine. The contrastive analysis showed that the substitution of W52R led to a markedly reduced binding ability of EP16. The mutation of the conserved W52 could change the biologic activity of the protein. The lack of the first 20 and last 10 amino acids had no effect on its biologic activity. Therefore, the mutation of a single amino acid residue of the key sequence could change the biologic activity of the nGLP-1R.
作者 高蔚丰 王娟
出处 《生物工程学报》 CAS CSCD 北大核心 2013年第1期87-94,共8页 Chinese Journal of Biotechnology
基金 宁夏高等学校科学研究项目(2010年度)资助~~
关键词 胰高血糖素样肽1受体 EXENDIN-4 易错PCR glucogan-like peptide 1 receptor, exendin-4, error-prone PCR
  • 相关文献

参考文献29

  • 1Thorens B. Expression cloning of the pancreatic beta cell receptor for the gluco-incretin hormone glucagons-like peptide 1[J].Proceedings of the National Academy of Sciences(USA),1992,(08):8641-8645.
  • 2Tibaduiza EC,Chen C,Beinborn M. A small molecule ligand of the glucagons-like peptide 1 receptor targets its amino-terminal hormone binding domain[J].Journal of Biological Chemistry,2001,(41):37787-37793.
  • 3Vilardaga JP,De Neef P,Di Paolo E. Properties of chimeric secretin and VIP receptor proteins indicate the importance of the N-terminal domain for ligand discrimination[J].Biochemical and Biophysical Research Communications,1995.885-891.
  • 4Couvineau A,Gaudin P,Maoret J J. Highly conserved aspartate 68,tryptophan 73 and glycine 109 in the N-terminal extracellular domain of the human VIP receptor are essential for its ability to bind VIP[J].Biochemical and Biophysical Research Communications,1995.246-252.
  • 5B Van Eyll,G(o)ke B,Wilmen A. Exchange of W39 by A within the N-terninal extrcellular domain of the GLP-1 receptor results in a loss of receptor function[J].Peptides,1996.565-570.
  • 6Wilmen A,B Van Eyll,G(o)ke B. Five out of six tryptophan residues in the N-terminal extracellular domain of the rat GLP-1 receptor are essential for its ability to bind GLP-1[J].Peptides,1997,(02):301-305.
  • 7Neidigh JW,Fesinmeyer RM,Prickett KS. Exendin-4 and glucagon-like-peptide-1:NMR structural comparisons in the solution and micelle-associated states[J].Biochemistry,2001,(44):13188-13200.doi:10.1021/bi010902s.
  • 8Parkes D,Jodka C,Smith PN. Pharmacokinetic actions of exendin-4 in the rat:comparison with glucagon-like peptide-1[J].Drug Development Research,2001.260-267.
  • 9Idris I,Patiag D,Gray S,Donnelly R. Exendin-4 increase insulin sensitivity via a PI-3-kinase-dependent mechanism:contrasting effects of GLP-1[J].Biochemical Pharmacology,2002,(05):993-996.
  • 10Edwards CM,Stanley SA,Davis R. Exendin-4 reduces fasting and postprandial glucose and decreases energy intake in healthy volunteers[J].American Journal of Physiology Endocrinology and Metabolism,2001,(01):E155-E161.

二级参考文献26

  • 1迪芬巴赫CW DieffenbachCarlW 德维克斯勒GS.PCR技术实验指南[M].北京:科学出版社,1998.145-158.
  • 2Coia G,Ayres A,Lilley GG,et al.Use of mutator cells as a mean for increasing production levels of a recombinant antibody directed against hepatitis B[J]. Gene,1997,201(3):203-209.
  • 3Jermutus L,Honegger A,Schwesinger F,et al.Tailoring in vitro evolution for protein affinity or stability[J].Proc Natl Acad Sci USA,20 01,98(1):75-80.
  • 4Spee JH,de Vos WM,Kuipes OP.Efficient random mutagenesis method with adjustable mutation by use of PCR and dITP[J].Nucl Acids Res,1993,21(3): 777-778.
  • 5Schaaper RM.Mechanisms of mutagenesis in the Escherichia coli mutator mutD5:role of DNA mismatch repair[J].Proc Natl Acad Sci USA,1988,85( 19):8126-8130.
  • 6Daugherty PS,Chen G,Iverson BL,et al.Quantitative analysis of the effect of the mutation frequency on the affinity maturation of single chain Fvantibodies[J].Proc Natl Acad Sci USA,2000,97(5):2029-2034.
  • 7Cadwell RC,Joyce GF.Randomization of genes by PCR mutagenesis[J]. PCR Method Appl,1992,2(1):28-33.
  • 8Fromant M,Blanquet S,Plateau P.Direct random mutagenesis of gene-sized DNA fragments using polymerase chain reaction[J].Anal Biochem,1995,224(3):347-353.
  • 9Suleiman AI-Sabah, Dan Donnelly. The positive charge at Lys-288 of the glucagons-like peptide-1 (GLP-1) receptor is important for binding the N-terminus of peptide agonists[J]. FEBS letters, 2003, 553:342-346.
  • 10Zander M, Madsbad S, Madsen J L, et al. Effect of 6-week course of glucagons-like peptide 1 on glycaemic control, insu lin sensitivity, and beta-cell function in type 2 diabetes: A parallel-group study[J]. Lanet, 2002, 359: 824-830.

共引文献10

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部