期刊文献+

基于社交网络的图像广告系统 被引量:1

A social-network-based image advertising system
下载PDF
导出
摘要 提出一种基于社交网络,整合用户影响力、上下文内容相关性、局部内容相关性的上下文相关图像广告系统,同时优化广告的传播效果和上下文内容相关性以实现广告、图像页面、图像嵌入点的关联.并将以上广告关联问题建模为一个非线性0-1整数规划问题,采用启发式搜索降低了最优化搜索的计算量.实验结果表明,以最流行的图像分享社交网站Flickr为广告平台,通过最优化用户影响力、上下文内容相关性和局部内容相关性,取得了较好的广告相关性和用户评价. A social-network-based image advertising system was proposed, which integrated the user influence, contextual relevance and local relevance and simultaneously optimized the dissemination of advertising and contextual relevance, as well as the insertion point of advertisement. Then, the advertising problem was formulated as a non-linear 0-1 integer programming problem. Moreover, a heuristic search scheme was proposed to reduce the computation consumption. Experimental results show that, on the most popular image sharing site, Flickr, the system achieves good relevance and encouraging user satisfactioru .
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2013年第1期42-49,共8页 JUSTC
关键词 社交网络 图像广告 用户影响力 上下文相关性 视觉一致性 social network image advertising user influence contextual relevance visual consistency
  • 相关文献

同被引文献16

  • 1Hanneman R A,Riddle M.Social network analysis[J].Riverside:University of California,2001.
  • 2Skyrms B,Pemantle R.A dynamic model of social network formation[M]//Adaptive Networks.Springer Berlin Heidelberg,2009:231-251.
  • 3Han J,Faloutsos C.Link Mining:Models,Algorithms,and Applications[M].Springer,2010.
  • 4Liben‐Nowell D,Kleinberg J.The link‐prediction problem for social networks[J].Journal of the American society for information science and technology,2007,58(7):1019-1031.
  • 5Lichtenwalter R N,Lussier J T,Chawla N V.New perspectives and methods in link prediction[C]//P SIGKDD.ACM,2010:243-252.
  • 6Huang Z,Li X,Chen H.Link prediction approach to collaborative filtering[C]//Proceedings of the 5th ACM/IEEE-CS joint conference on Digital libraries.ACM,2005:141-142.
  • 7Murata T,Moriyasu S.Link prediction of social networks based on weighted proximity measure[M].ICWI,ACM Press,New York,2007.
  • 8Soundarajan S,Hopcroft J.Using community information to improve the precision of link prediction methods[C].WWW.ACM Press,2012:607-608.
  • 9Yan B,Gregory S.Finding missing edges in networks based on their community structure[J].Physical Review E,2012,85(5):056112.
  • 10Clauset A,Moore C,Newman M E J.Hierarchical structure and the prediction of missing links in networks[J].Nature,2008,453(7191):98-101.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部