期刊文献+

动态控制场下一种改进的量子最优控制 被引量:1

Improved Quantum Optimal Control in Dynamic Control Field
下载PDF
导出
摘要 结合量子系统的自身特点,针对直接将经典最优控制应用到量子系统中所存在的可靠性不高、收敛速度较慢等问题,借助于动态迭代控制场提出了一种更高效、收敛性更好的单调收敛的改进量子最优控制算法(IQOCT)。通过系统仿真实验,对控制场权值、收敛速度以及迭代步进参数之间的关系作了详细的分析。结果表明,与一般最优算法和共轭梯度算法相比,改进算法在可靠性和收敛速度等方面都有明显提高。 According to the specialty of quantum systems,the reliability or the efficiency of a general optimal control scheme leaves much to be desired.This paper developed a special improved quantum optimal control method for using dynamic control field,which can be implemented as fast convergent algorithms.The relations among penalty of the field energy value,convergence speed and iteration step parameters were analyzed in detail through the system simulation experiments.Theoretical analysis shows that this new algorithm exhibits significantly superior to class of quantum optimal control and the conjugate gradient method in reliability and convergence rate.
出处 《计算机科学》 CSCD 北大核心 2013年第1期233-235,261,共4页 Computer Science
基金 国家自然科学基金项目(10774131)资助
关键词 量子最优控制 共轭梯度算法 收敛速度 Quantum optimal control Conjugate gradient method Convergence rate
  • 相关文献

参考文献2

二级参考文献5

  • 1Domenico D'alessandro, Mohammed Dahleh. Optimal control of two-level quantum systems[J]. IEEE Trans on Automatic Control, 2001,46 (6) : 866-876.
  • 2Schirmer S G, Leahy J V. Limits of control for quantum systems: Kinematial bounds on the optimization of observables and the question of dynamical realizability[H]. Physical Review A, 2001,63 (025403).
  • 3Dahleh M, Peirce A, Rabitz H A, et al. Control of molecular motion[J]. Proc IEEE, 1996,84 (1) : 7-15.
  • 4DiVincenzo D P. Quantum computation [J]. Science,1995,270(5234): 255-261.
  • 5Salapaka M D, Rabitz H M, Ramakrishna V, et al.Controllability of molecular systems [J ]. Physical Review A, 1995,51 : 1050-2947.

共引文献9

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部