期刊文献+

多核架构下计算凸壳的并行算法 被引量:3

Parallel Algorithm for Computing Convex Hulls in Multi-processor Architecture
下载PDF
导出
摘要 改进了周培德的Z3-2算法,提出一种在多核架构下计算平面点集凸壳的并行算法。用"颜氏距离"来数字化平面上点与有向线段的位置关系,减少了计算次数和时间。进一步将原算法中比较耗时的两个过程分别在O(1)的时间复杂度内进行迭代分解,即当原问题规模大于给定阈值时,将原问题分解为若干个独立的子问题,若所得子问题的规模仍大于给定阈值,则再对子问题进行分解;所有子问题被加入并行任务组进行并行求解以充分利用多核处理器的并行计算资源。给出了算法的正确性说明,实验结果也表明本算法稳定高效。 This paper Improved the Z3-2 algorithm proposed by ZHOU Pei-de, and proposed a parallel algorithm for computing the convex hulls of planar point set in multi-processor architecture. The times and duration of calculation were reduced by digitizing the positional relationship between a point and a directed line segment on plane with "Yan's distance". Further, the two progresses were decomposed iteratively which are the foremost time-consuming parts in the algorithm within the complexity of 0(1). That is, the original task is decomposed into several sub-tasks when its scale is greater than a given threshold and then decompose any of the sulytasks if its scale is still greater than the threshold. All sub-tasks will be executed in parallel from the parallel task group to take full advantage of the parallel computation re- sources of the muhi-processor. The correctness of the algorithm was discussed. The experiment results show that the algorithm is efficient and stable.
出处 《计算机科学》 CSCD 北大核心 2013年第2期16-19,57,共5页 Computer Science
基金 国家自然科学基金项目(41071253) 江苏省六大人才高峰项目(20080249)资助
关键词 凸壳 并行计算 多核 颜氏距离 Convex hull, Parallel computing, Multi-core, Yan~ s distance
  • 相关文献

参考文献12

二级参考文献67

共引文献82

同被引文献41

  • 1李水乡,陈斌,赵亮,刘曰武.快速Delaunay逐点插入网格生成算法[J].北京大学学报(自然科学版),2007,43(3):302-306. 被引量:19
  • 2杨绪兵,陈松灿,杨益民.局部化的广义特征值最接近支持向量机[J].计算机学报,2007,30(8):1227-1234. 被引量:10
  • 3陈学工,黄晶晶.基于最优凸壳技术的Delaunay三角剖分算法[J].计算机工程,2007,33(17):93-95. 被引量:5
  • 4Brassel K E,Reif D.A Procedure to Generate TIN Polygons[J].Geographical Analysis,1979,11(3):289-303.
  • 5McCullagh M J,Michael J,Ross C G.Delaunay Triangulation of a Random Data Set for its Arithmic Mapping [J].The Cartographic Journal,1980,17(2):93-99.
  • 6Shamos M I,Hoey D.Closest-point Problems [C]∥Proceeding of the 16th Annual IEEE Symposium on Foundation of Computer Science.LosAngeles,California:IEEE,1975:151-162.
  • 7Lewis B A,Robinson J S.Triangulation of Planar with Applications [J].The computer Journal,1978,21(4):324-332.
  • 8Lee D T,Schacher B J.Two Algorithms for Constructing aDelaunay Triangulation [J].International Journal of Computer and Information Sciences,1980,9(3):219-242.
  • 9Lawson C L.Generation of a Triangular Grid with Application to Contour Plotting [C]∥Proceeding of Technical Memorandum,California institute of technology.Jet Pollution Laboratory,1972:299.
  • 10Johnstone J K,Sloan K R.Tensor Product Surfaces Guided by Minimal Surface Area Triangulations[C]∥Proceedings of IEEE Conference on Visualization.1995:354-361.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部