期刊文献+

基于多模型航迹质量的融合算法 被引量:7

Track-to-track Fusion Algorithm Based on Track Quality with Multiple Model
下载PDF
导出
摘要 如何确定最优加权因子是加权航迹融合算法中一个值得深入研究的问题。通过提出多模型航迹质量(TrackQuality with Multiple Model,TQMM)的概念,并给出一种带信息反馈的加权航迹融合算法,来解决多传感器跟踪同一目标时的权值最优分配问题。系统引入反馈机制,利用多模型航迹质量确定权值,能够精确地更新权值,从而实时有效地进行目标跟踪。仿真结果表明,与已有的加权融合算法相比,该算法具有更好的跟踪性能,特别是在融合系统传感器观测精度相差较大的情况下,算法的跟踪效果更为突出;并且,随着传感器数目的增加,系统的跟踪精度逐步提高,但当传感器增加到一定数目时,系统的融合精度并没有得到明显的改善。 How to determine the optimal weighting factor is a problem that is worth of further study in the weighted track-to-track fusion. The concept of track quality with multiple model(TQMM) was put forward, and a weighted track- to-track fusion algorithm with feedback was presented to solve the problem of the optimal allocation of weights when multi-sensor tracks the same target. The feedback mechanism was introduced into fusion system, and the weights were determined using TQMM, so that the fusion system can update the weights accurately, and track the target effectively in real time. Experimental results show that the algorithm has a better tracking performance compared with the existing weighted fusion algorithm, especially in the fusion system in which the measurement accuracy of sensors has a large difference. With the increase of the number of sensors, tracking precision of the fusion system is improved gradually. However, when sensor is increased to a certain number, fusion accuracy has no longer a significant improvement.
出处 《计算机科学》 CSCD 北大核心 2013年第2期65-70,共6页 Computer Science
基金 航空科学基金(20090580013 20110580002) 中央高校基本科研业务费专项资金(ZYGX2009J092 ZYGX2010X022)资助
关键词 多传感器 航迹融合 加权融合 多模型航迹质量 Multi-sensor, Track-to-track fusion, Weighted fusion, Track quality with multiple model
  • 相关文献

参考文献14

二级参考文献47

  • 1胡振涛,刘先省.一种实用的数据融合算法[J].自动化仪表,2005,26(8):7-9. 被引量:25
  • 2贾建华,王军峰,冯冬青.人工神经网络在多传感器信息融合中的应用研究[J].微计算机信息,2006,22(03S):192-194. 被引量:16
  • 3Heidemann J, Silva F, Intanagonwiwat C, et al. Building efficient wireless sensor networks with low-level naming[C]///ACM SOSP. 2001
  • 4Heinzelman W, Chandrakasan A, Balakrishnan H. Energy-efficient Communication Protocols for Wireless Microsensor Networks [C]//Hawaaian Int'l Conf. on Systems Science. 2000
  • 5Yu L, Wang N, Zhang W, et al. GROUP: a Grid-clustering Routing Protocol for Wireless Sensor Networks[C]//IEEE International Conference on Wireless Communications, Networking and Mobile Computing. 2006
  • 6Krishnamachari B, Estrin D, Wicker S. The Impact of Data Aggregation in Wireless Sensor Networks[C]//The 22nd International Conference on Distributed Computing Systems Workshops. 2002
  • 7Intanagonwiwat C, Govindan R, Estrin D. Directed Diffusion: A Scalable and Robust Communication Paradigm for Sensor Networks[C]//MOBICOM 2000. August 2000: 56-67
  • 8Intanagonwiwat C, Estrin D, et al. Impact of Network Density on Data Aggregation in Wireless Sensor Networks [R]. Technical Report 01-750. University of Southern California, Computer Science Department, 2001
  • 9Madden S, Franklin M J, et al. Tag: A Tiny Aggregation Service for Ad hoc Sensor Networks[C]//USENIX OSDI. 2002
  • 10Arici T, Gedik B, Altunbasak Y, et al. PINCO: a Pipelined Innetwork Compression Scheme for Data Collection in Wireless Sensor Networks [C]//Proc. IEEE Int. Conf. Computer Communications and Networks. 2003

共引文献79

同被引文献67

引证文献7

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部