期刊文献+

语言真值格值命题逻辑系统中广义文字的归结判定 被引量:7

Resolution Determination of Generalized Literals in Linguistic Truth-valued Lattice-valued Propositional Logic System
下载PDF
导出
摘要 自动推理是人工智能研究的一个重要内容,基于归结原理的自动推理是自动推理研究的重要分支。基于语言真值格蕴涵代数的格值逻辑系统能处理带有可比较项和不可比较项的信息或知识,为自动推理研究提供了严格的逻辑基础。给出了语言真值格蕴涵代数LV(n×2)的一些性质,在基于十八元语言真值格蕴涵代数LV(9×2)的格值命题逻辑系统LV(9×2)P(X)框架下,刻画了1-IESF和2-IESF型对应广义文字的结构,给出了其广义文字的可归结性。这些工作将为基于语言真值格值逻辑系统的归结自动推理提供重要的研究基础。 Automated reasoning is an important realm in artificial intelligence. Resolution-based automated reasoning is one of the research branches. Lattice-valued logic system based on lattice implication algebra can deal with information or knowledge with comparability and incomparability, provide a stick logical foundation for automated reasoning. The present paper gave some properties of linguistic truth-valued lattice implication algebra ~v(n^2). Under lattice-valued propositional logic system 2F-v(g^2)P(X)based on linguistic truth-valued lattice implication algebra Afv(92)with eighteen elements, the structures of generalized literals about 1-IESF and 2-IESF were given. In addition, the resolution determi- nation of generalized literals was obtained. These works can offer an important foundation for automated reasoning based on linguistic truth-valued lattice-valued logic system.
作者 许伟涛 徐扬
出处 《计算机科学》 CSCD 北大核心 2013年第2期237-240,273,共5页 Computer Science
基金 国家自然科学基金(61175055) 国家自然科学青年基金项目(61100046) 河南工业大学高层次人才基金项目(2012BS012)资助
关键词 自动推理 格值逻辑系统 语言真值格蕴涵代数 广义文字 归结 Automated reasoning, Lattice-valued logic system, Linguistic truth-valued lattice implication algebra, Genera-lized literal, Resolution
  • 相关文献

参考文献13

  • 1Robinson J A. A machine-oriented logic based on the resolution principle[J].Journal of the Association for Computing Machinery,1965,(01):23-41.
  • 2徐扬.格蕴涵代数[J].西南交通大学学报,1993,28(1):20-27. 被引量:318
  • 3刘叙华.基于归结方法的自动推理[M]北京:科学出版社,1994.
  • 4Xu Yang;Qin Ke-yun.Lattice-Valued Propositional Logic(Ⅰ)[J]西南交通大学学报,1993(02):123-128.
  • 5Xu Y,Ruan D,Kerre E E. α-resolution principle based on lattice-valued propositional logic LP(X)[J].Information Scien-ce,2000,(1-4):195-223.
  • 6Xu Yang,Ruan Da,Qin Ke-yun. Lattice-valued logic:An alternative approach to treat fuzziness and incomparability[M].Beilin:Springer-Verlag,2003.
  • 7Xu Yang;Chen Shu-wei;Ma Jun.Linguistic truth-valued lattice implication algebra and its properties[A]北京,20061413-1418.
  • 8Xu Y,Chen S W,Liu J. Weak Completeness of Resolution in a Linguistic Truth-Valued Propositional Logic[A].Cancun,Mexico,2007.358-366.
  • 9Xu Wei-tao,Xu Yang,Li Tian-rui. The Structure of Generalized Literals in Linguistic Truth-Valued Propositional Logic Systems[A].Hasselt,Belgium,2009.631-636.
  • 10Xu Y,Liu J,Ruan D. Determination of α-resolution in lattice-valued first-order logic LF (X)[J].Information Sciences,2011,(10):1836-1862.

共引文献317

同被引文献89

引证文献7

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部