期刊文献+

多元Chebyshev正交多项式混合模型及其在医学图像分割中的应用 被引量:2

Medical Image Segmentation Based on Finite Mixture Models of Non-parametric Multivariate Chebyshev Orthogonal Polynomials
下载PDF
导出
摘要 针对原有一元正交多项式混合模型只能根据灰度特征分割图像的问题,提出一种基于多元Chebyshev正交多项式混合模型的多维特征的医学图像分割方法。首先,根据Fourier分析方法与张量积理论推导出图像的多元Chebyshev正交多项式,并构建多元正交多项式的非参数混合模型,用最小均方差(MISE)估计每一个模型的平滑参数;然后,用EM算法求解正交多项式系数和模型的混合比。此方法不需要对模型作任何假设,可以有效克服"模型失配"问题。通过实验,表明了该分割方法的有效性。 To solve the problem of over-reliance on priori assumptions of the parameter methods for finite mixture mo- dels and the problem that monic Chebyshev orthogonal polynomials can only process the gray images, a segmentation method of mixture models of multivariate Chebyshev orthogonal polynomials for color image was proposed in this pa- per. First, the multivariate Chebyshev orthogonal polynomials was derived by the Fourier analysis and the tensor pro- duct theory, and the nonparametric mixture model of multivariate orthogonal polynomials was proposed. And the mean integrated squared error(MISE) was used to estimate the smoothing parameter for each model. Second, the expectation maximum(EM) algorithm was used to estimate the orthogonal polynomial coefficients and the model of the weight. This method does not require any prior assumptions on the model, and it can effectively overcome the "model mismatch' problem. The experimental results with the images show that this method can achieve better segmentation results than the mean-shift method.
出处 《计算机科学》 CSCD 北大核心 2013年第2期279-283,共5页 Computer Science
基金 国家自然科学基金(60841003) 教育部博士点基金(20113227110010) 江苏省博士创新基金(CX10B_274Z) 吉林教育厅"十二五"科学技术研究项目 吉教科合字[2013]第448号资助
关键词 非参数混合模型 图像分割 平滑参数 多元正交多项式 Non-parametric mixture models, Image segmentation, Smoothing parameter, Multivariate orthogonal polyno-mial
  • 相关文献

参考文献4

二级参考文献35

  • 1姚继锋,孙家昶.平行十二面体区域上的快速离散傅立叶变换及其并行实现[J].数值计算与计算机应用,2004,25(4):303-314. 被引量:6
  • 2宋余庆,谢从华,朱玉全,李存华,陈健美,王立军.基于近似密度函数的医学图像聚类分析研究[J].计算机研究与发展,2006,43(11):1947-1952. 被引量:16
  • 3PEEL D,McLACHLAN G J.Robust mixture modelling using the distribution[J].Statistics and Computing,2000,10(4):339-348.
  • 4TSUNG I L,JACK C L.Robust mixture modeling using the skew t-distribution[J].Statistics and Computing,2007,17(2):81-92.
  • 5BOUGUILA N,ZIOU D,VAILLANCOURT J.Unsupervised learning of a finite mixture model based on the Dirichlet distribution and its application[J].IEEE Trans on Image Processing,2004,13(11):1533-1543.
  • 6FAN S K S,LIN Y,WU C C.Image thresholding using a novel estimation method in gene-ralized Gaussian distribution mixture modeling[J].Neurocomputing,2008,72(1-3):500-512.
  • 7ZRIBI M.Unsupervised Bayesian image segmentation using orthogonal series[J].Visual Communication & Image Representation,2007,18(2):496-503.
  • 8McLACHLAN G J,PEEL D.Finite mixture models[M].New York:Wiley,2000.
  • 9ZRIBI M,GHORBEL F.An unsupervised and non-parametric Baye-sian classifier[J].Pattern Recognition Letters,2003,24(1-3):97-112.
  • 10CENCOV N N.Evaluation of an unknown distribution density from observations[J].Soviet Mathematics,1962(3):1559-1562.

共引文献212

同被引文献24

  • 1范九伦,赵凤,张雪峰.三维Otsu阈值分割方法的递推算法[J].电子学报,2007,35(7):1398-1402. 被引量:69
  • 2Tao Wu,Kun Qin.Data field-based mechanism for three-dimensional thresholding[J].Neurocomputing.2012
  • 3Dana E. Ilea,Paul F. Whelan.Image segmentation based on the integration of colour–texture descriptors—A review[J].Pattern Recognition.2011(10)
  • 4Na Wang,Xia Li,Xiao-hong Chen.Fast three-dimensional Otsu thresholding with shuffled frog-leaping algorithm[J].Pattern Recognition Letters.2010(13)
  • 5Kaihua Zhang,Lei Zhang,Huihui Song,Wengang Zhou.Active contours with selective local or global segmentation: A new formulation and level set method[J].Image and Vision Computing.2009(4)
  • 6Minh A. Hoang,Jan-Mark Geusebroek,Arnold W.M. Smeulders.Color texture measurement and segmentation[J].Signal Processing.2004(2)
  • 7HAYKIN S. Adaptive Filter Theory (Fourth Edition) [M]. New Jersey.. Prentice Hall, 2001.
  • 8KALMAN R E. A New Approach to Linear Filtering and Prediction Problems [J]. Transaction of the ASME-Journal of Basic Engineering, 1960, 82(Series D): 35-45.
  • 9GORDON N J, SALMOND D J, SMITH A F M. Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation [J]. IEEE Proceedings on Radar and Signal Processing, 1993, 140(2): 107-113.
  • 10ARULAMPALAM M S, MASKELL S, GORDON N. A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking [J]. IEEE Trans on Signal Processing, 2002, 50(2): 174-188.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部