期刊文献+

基于面部视觉特征的精神疲劳可拓辨识模型 被引量:5

Mental Fatigue Recognition Extension Model Based on Facial Visual Cues
下载PDF
导出
摘要 在基于面部视觉特征的精神疲劳辨识中,被测者的生活、工作负担和睡眠质量等背景信息对于准确辨识疲劳具有非常重要的作用,但却无法直接从面部视频中获取。为此,以可拓学的理论和思想方法为基础,结合经典数学的一些方法和现有的计算机视觉技术,提出并构建了一种全新的精神疲劳可拓辨识模型。该模型基于矛盾转化的思想,将无法直接从面部视频中获取到的背景信息转化为与之相关联的可以直接从面部视频中获取到的面部疲态的计算,并融合现有的面部疲劳特征进行精神疲劳辨识。实验结果验证了该模型的有效性。 The background information, such as life burden, work load and sleep quality, plays a very important role m mental fatigue recognition based on facial visual cues, however, they cannot be directly extracted from facial video. Based on the theory, ideals and methods of extenics, combined with some classic mathematical methods and existing computer vision technology, this paper proposed a new mental fatigue extension recognition model. Based on the idea of contradic- tions transformation, the background information which cannot be directly extracted from the facial video is translated into the corresponding facial fatigue appearance in the model, and the facial fatigue appearance can be directly extracted from the facial video. And this model also proposes a fusion approach for existing facial fatigue visual cues and facial fa- tigue appearance to recognize mental fatigue. The experimental results verify the validity of the model.
出处 《计算机科学》 CSCD 北大核心 2013年第2期284-288,共5页 Computer Science
基金 国家自然科学基金(60272089) 广东省科技计划国际合作项目(2010B050400007)资助
关键词 精神疲劳辨识模型 可拓集合 可拓变换 面部疲态 关联函数 Mental fatigue recognition model, Extension set, Extension transformation, Facial fatigue, Correlation function
  • 相关文献

参考文献12

  • 1Ji Qiang,Zhu Zhi-wei,Lan Pei-lin. Real-Time Nonintrusive Monitoring and Prediction of Driver Fatigue[J].IEEE Transactions on Vehicular Echnology,2004,(04):1052-1068.doi:10.1109/TVT.2004.830974.
  • 2Ji Qiang,Lan Pei-lin,Looney C. A Probabilistic Framework for Modeling and Real-Time Monitoring Human Fatigue[J].IEEE Transactions on System Man and Cybernetics PartA:System and Humans,2006,(05):862-875.
  • 3杨春燕;蔡文.可拓工程[M]北京:科学出版社,200718-97.
  • 4李仕维;李乃民;王春燕.人体疲劳面部变化观察[J]中国健康月刊,2011(07):70-71.
  • 5王磊,吴晓娟,巴本冬,董文会.一种基于视觉的PERCLOS特征提取方法[J].计算机工程与科学,2006,28(6):52-54. 被引量:8
  • 6Ji Q,Yang X. Real time visual cues extraction for monitoring driver vigilance[A].Vancouver,Canada:Springer,2001.107-124.
  • 7Norimatsu Y,Mita S,Kozuka K. Detection of the gaze direction using the time varying image processing[A].Nagoya,Japan:IEEE,2003.74-79.
  • 8Abtahi S;Hariri B;hammadi S S.Driver Drowsiness Monitoring based on Yawning Detection[A]浙江杭州,20111606-1610.
  • 9Zhu Z,Ji Q. 3D face pose tracking from an uncalibrated monocular camera[A].Cambridge,UK,2004.400-403.
  • 10付晓峰,韦巍.基于高级局部二元模式直方图映射的表情识别[J].模式识别与人工智能,2009,22(1):123-128. 被引量:7

二级参考文献49

共引文献28

同被引文献64

  • 1闵娟.电脑综合征的影响因素及健康教育对策[J].中国健康教育,2004,20(9):853-854. 被引量:17
  • 2王磊,吴晓娟,巴本冬,董文会.一种基于视觉的PERCLOS特征提取方法[J].计算机工程与科学,2006,28(6):52-54. 被引量:8
  • 3CHENG W,LIAO H,PAN M. A fatigue detection system with eyeglasses removal[A].Piscataway,NJ:IEEE Press,2013.331-335.
  • 4KURYLYAK Y,LAMONACA F,MIRABELLI G. Detection of the eye blinks for human's fatigue monitoring[A].Piscataway,NJ:IEEE Press,2012.1-4.
  • 5DIVJAK M,BISCHOF H. Eye blink based fatigue detection for prevention of computer vision syndrome[A].Piscataway,N J:IEEE Press,2009.350-353.
  • 6LU B,SUN Y F,WANG L. Dynamic face fatigue detection based on feature-level fusion[A].Piscataway,NJ:IEEE Press,2010.123-126.
  • 7BAI F,LUBECKI T M,CHEW C M. Novel time-frequency approach for muscle fatigue detection based on sEMG[A].Piscataway,NJ:IEEE Press,2012.364-367.
  • 8AL-MULLA M,SEPULVEDA F. Predicting the time to localized muscle fatigue using ANN and evolved sEMG feature[A].Piscataway,NJ:IEEE Press,2010.1-6.
  • 9NAKANE H,TOYAMA J,KUDO M. Fatigue detection using a pressure sensor chair[A].Piscataway,NJ:IEEE Press,2011.490-495.
  • 10KOMANDUR S,JOHNSON PW,STORCH R L. Relation between mouse button click duration and muscle contraction time[A].Piscataway,N J:IEEE Press,2008.2299-2301.

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部