期刊文献+

市场微结构的股市交易异常行为检测

Anomaly Detection in Stock Marketplace Based on Market Microstructure
原文传递
导出
摘要 股票市场存在诸多弊端,如滥用客户信息,价格操纵等.股市监控是金融监管体系中不可缺少的一环,它对市场交易的诚信、公平和公开透明起到重要作用.现有检测交易异常行为的诸多方法中,很少分析股市即日数据并挖掘潜在的交易行为来检测异常.股市是一个复杂的非线性系统,一套可行高效的异常行为检测方法是股市异常行为监控的重要课题.提出一种基于市场微结构的异常交易行为检测方法,该方法能较有效地检测出股市存在的异常交易行为.最后,通过实例说明该方法的可行性和有效性. It is well known that many defects exist in current stock market, such as intorma- tion abuse and price manipulation. Anomaly detection is helpful to enhance the integrity, fairness and transparence of stock market so it becomes a key link in financial regulatory system. Unfortu- nately, existing approaches were low performing as they rarely focused on analyzing the intraday in- formation and mining potential trading behaviors. It proposed a method, which based on market mi- crostructure, to detect abnormal trading behaviors. An experiment was presented demonstrating the feasibility and effectiveness of this approach.
作者 林杨
出处 《福建师范大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第1期31-35,67,共6页 Journal of Fujian Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(70371064)
关键词 市场微结构 即日数据 微结构向量序列 异常检测 market microstructure intraday information vector sequence of microstructure anomaly detection
  • 相关文献

参考文献14

  • 1Yoonseong Kim,So Young Sohn. Stock fraud detection using peer group analysis[J].Expert Systems With Applications,2012,(10):8986-8992.
  • 2K Golmohammadi,Zaiane O R. Data mining applications for fraud detection in securities market[A].New York:IEEE Press,2012.107-114.
  • 3李心.中国股票市场的监管分析[J].中小企业管理与科技,2011(22):83-84. 被引量:2
  • 4Cao L,Zhao Y,Zhang C. Mining impact targeted activity patterns in imbalanced data[J].IEEE Transactions on Knowledge and Data Engineering,2008,(08):1053-1066.
  • 5齐红威,张军平,王珏.主曲线异常检测及其在股票市场中的应用[J].计算机研究与发展,2005,42(8):1306-1311. 被引量:6
  • 6Ripley B D.模式识别与神经网络[M]北京:人民邮电出版社,2009243-283.
  • 7Wikipedia. Market microstructure[EB/OL].http://en.Wikipedia.org/wiki/Marker_microstructure,2012.
  • 8Ou Yuming,Cao Longbing,Luo Chao. Mining exceptional activity patterns in microstructure data[A].New York:IEEE Press,2008.884-887.
  • 9Rahman,Lee S,Ang C F. Intraday return volatility process:evidence from NASDAQ stocks[J].Review of Quantitative Finance and Accounting,2002,(02):155-180.
  • 10朴军.我国股票市场长期异常回报率的计算和检测方法研究[J].管理工程学报,2006,20(1):62-66. 被引量:1

二级参考文献28

  • 1吴世农.我国证券市场效率的分析[J].经济研究,1996,31(4):13-19. 被引量:317
  • 2宋慧.论对我国证券市场的监管[J].青海师专学报,2007,27(1):68-71. 被引量:2
  • 3兰虹.论对证券市场监管者的监管[J].西华大学学报(哲学社会科学版),2007,26(1):59-61. 被引量:7
  • 4锺瑛.《中国股票市场发育、发展的历史考察:1990-2008》.
  • 5Fama and French.Common risk factors in the returns of stocks and bonds[J].Journal of Financial Economics,1993,33:3 ~ 56.
  • 6Fama and French.Multifaetor explanations of asset pricing anomalies[J].Journal of Finance,1996,51:55 ~ 84.
  • 7Lyon Barber,Tsai.Improved methods for tests of long-run abnormal stock returns[J].Journal of Finance,1999,1:26 ~ 63.
  • 8Johnson,N,J.Modified T test and confidence intervals for asymmetrical populations[J].Journal of American Statistical Association,1978,73:536 ~ 544.
  • 9Kothari,S.P,and Warner.Measuring long-horizon security price performance[J].Journal of Financial Economics,1997,43:301 ~ 339.
  • 10朴军.两种长期异常回报率设定方法比较[A].北京国际金融会议论文,2002.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部