期刊文献+

集合Λ上的半格Γ确定的二元关系半群Ρ_Γ(Λ×Λ)的Green-关系 被引量:3

Green’s relations of semi-group Ρ_Γ (Λ×Λ) of binary relations determined by the semilattice Γ on the setΛ
下载PDF
导出
摘要 设Λ是任意的非空集合,Γ是集合Λ上的半格.研究了集合Λ上的半格确定的二元关系半群ΡΓ(Λ×Λ)的Green-R关系和Green-L关系. Let∧ be an arbitrary nonempty set, and F be a semilattiee on the set∧. The paper researches Green relation R and L of semi-group PГ( ∧×∧) of binary relations determined by the semilattice Г on the set∧.
作者 林屏峰
出处 《西南民族大学学报(自然科学版)》 CAS 2013年第1期26-29,共4页 Journal of Southwest Minzu University(Natural Science Edition)
基金 中央高校基本科研业务费专项项目(12NZYQN29 12NZYTD21)
关键词 二元关系半群 Green-R关系 Green-L关系 semi-group of binary relations Green relationR Green relation L
  • 相关文献

参考文献10

二级参考文献34

  • 1PLEMMONS R J, WEST M T. On the semigroup of binary relations[J]. Pacific J Math, 1970, 35: 743-753.
  • 2PLEMMONS R J, SCHEIN B M. Groups of binary relations[J]. Semigroup Forum,1970, 1: 267-271.
  • 3SCHWARZ S. On idempotent binary relations on a finite set[J]. Czech J Math, 1970, 20: 696-702.
  • 4KONIECZNY J. The semigroup generated by regular Boolean matrices[J]. South Asian Bull of Math, 2002, 25: 627-641.
  • 5KONIECZNY J. Green's equivalences in finite semigroups &binary relations[J]. Semigroup Forum, 1994,48: 235-252.
  • 6CHASE K. New semigroups of binary relations[J]. Semigroup Forum, 1979, 18: 79-82.
  • 7CHASE K. Sandwish semigroups of binary relations[J]. Discrete Math, 1979, 28:231-236.
  • 8CHASE K. Maximal groups in sandwish semigroups of binary relations[J]. Pacific J Math, 1982, 100: 43-59.
  • 9KI HANG KIM. Boolean matrix theory and applications[M]. New York: Marcel Dekker, 1982.
  • 10LIN P F, XU B, ZHANG CH J. Some properties of Semigroup Pθ(I × A) of all Binary Relations from a Set I to a Set A [J]. Journal of Guizhou Normal University (Natural Sciences), 2007, 25(3): 72-77.

共引文献7

同被引文献17

  • 1ROBERT JAMES PLEMMONS. On the semigroup of binary relations[J]. Pacific Journal Mathematics, 1970,35:743 -753.
  • 2ROBERT JAMES PLEMMONS, BORIS M. Schein. Groups of binary re- lations [J], Semigreup Forum, 1970,1:267 - 271.
  • 3TEFAN SCHWARZ. On idempotent binary relations on a finite set [J]. Czechoslovak Mathematical Journal, 1970,20:696 - 702.
  • 4KAREN CHASE. New semigreups of binary relations [J]. Semigroup Forum, 1979,18:79 - 82.
  • 5KAREN CHASE. Sandwish semigroups of binary relations[J]. Discrete Math. , 1979,28:231 - 236.
  • 6KAREN CHASE. Maximal groups in sandwish semigroups of binary re- lations [J]. Pacific Journal Mathematics, 1982,100:43 - 59.
  • 7RALPH N, MCKENZIE M, BORIS M. Schein. Every semigreups is iso- morphic to a transitive semigroup of binary relations [J]. Transactions of the American Mathematical Society, 1997,349:271 - 285.
  • 8JANUSZ KONIECZNY. The semigroup generated by regular Boolean matrices [J]. Southeast Asian Bulletin of Mathematics, 2002,25:627 - 641.
  • 9GARRETT BIRKHOFF. Lattice Theory [M]. New York : American Mathematical Society, 1967.
  • 10JOHN MACKINTOSH HOWIE. An Introduction to Semigroup Theory [M]. Landon : Academic press, 1976.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部