期刊文献+

改进区域生长法及其在冠状动脉造影图中的应用 被引量:2

An Improved Region Growing Algorithm and Its Application in Coronary Artery Angiographic
下载PDF
导出
摘要 冠状动脉造影过程中,由于人体骨骼、肌肉、器官等组织对X射线吸收程度不同,得到的冠状动脉造影图像亮度不均匀,传统的区域生长算法无法准确分割不均匀亮度的图像,而且种子点的选取需要人工交互,效率低下.针对这些问题,提出了一种改进区域生长算法,该算法自动生成一组种子点,种子点生长时,使用生长区域的局部平均值作为生长准则中的参数,最后使用医学影像计算与计算机辅助介入(medical image computing and computer assisted intervention,MICCAI)准则对分割后的图像进行评价.实验表明,使用该算法对冠状动脉造影图像进行分割,能得到较好的结果,且不需要人工交互,提高了图像分割的效率和准确性. The intensity of coronary artery angiograms is non uniform since different organizations, such as the bones, muscles, and organs, have diffcrem absorption of X ray during angiography. The classical region growing algorithm has poor effect on these non-u- niform intensity images,and it is also inefficient since the seeds must select manually. An improved region growing algorithm is pres ented by this paper, which not only produce seeds automatically,but also use a local parameter in growing criteria. Then we used Mic- cai criteria to evaluate the result of our algorithm. The efficacy of the approach is demonstrated with experiments.
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第1期38-42,共5页 Journal of Xiamen University:Natural Science
基金 国家自然科学基金项目(61102137 60971085) 福建省自然科学基金项目(2011J01366 2010J01350)
关键词 图像分割 区域生长 自适应 随机种子点 image segmentation region growing adapted random seeds
  • 相关文献

参考文献14

  • 1Kirbas C, Quek F. A review of vessel extraction tech niques and algorithms[J]. ACM Comput Surv, 2004,36: 81121.
  • 2Zueker S W. Region growing: childhood and adolescence [J]. Computer Graphics and linage Processing/Computer Graphics and Image Processing, 1976,5 :382-399.
  • 3彭丰平,鲍苏苏,曾碧卿.基于自适应区域生长算法的肝脏分割[J].计算机工程与应用,2010,46(33):198-200. 被引量:23
  • 4陆剑锋,林海,潘志庚.自适应区域生长算法在医学图像分割中的应用[J].计算机辅助设计与图形学学报,2005,17(10):2168-2173. 被引量:69
  • 5Adams R, Bischof I.. Seeded region growing[J]. IEEE Transactions on Pattern Analysis and Machine Intelli gence,1994,16:641 647.
  • 6Yu Xiaohan, Y[a Jaaski J, Huttunen O, et al. Image seg- mentalion combining region growing with edge detection [C]//llth International Conference on Pattern Recogni tion. Hague : IEEE, 1992 .. 481-484.
  • 7Ding J undi, Ma Runing, Chen Songean. A scale-based con- nected coherence tree algorithm for image segmentation [J]. 1EEE Transactions on Image Processing, 2008, 17: 204 216.
  • 8高岩,王博亮.改进的区域生长算法及其在肾实质自动分割中的应用[J].厦门大学学报(自然科学版),2012,51(4):701-703. 被引量:3
  • 9Sahoo P K,Sohani S,Wong A K C. A survey of thresh- o[ding techniques[J]. Computer Vision, Graphics, and Image Processing, 1988,41 : 233-260.
  • 10Pohle R,Toennies K D. A new approach for model based adaptive region growing in medical image analysis[C]// Computer Analysis of Images and Patterns, Lecture Notes in Computer Science. Berlin: Springer, 2001: 238-246.

二级参考文献27

  • 1Hohne K H,Hanson W A.Interactive 3D segmentation of MRI and CT volumes using morphological operations[J].Comp Assisted Tumogr,1992,16(2):285-294.
  • 2Zucker S W.Region growing:Childhood and adolescence[J].Computer Graphics Image Processing,1976,5:382-399.
  • 3Wan S Y,Higgins W E.Symmetric region growing[J].Image Processing,2003,12(9):1007-1015.
  • 4Mehnert A,Jackway P.An improved seeded region growing algorithm[J].Pattern Recognition Letters,1997,18(10):1065-1071.
  • 5Revol-Muller C,Peyrin F,Carrillon Y,et al.Automated 3D region growing algorithm based on an assessment function[J].Pattern Recognition Letters,2002,23:137-150.
  • 6Lee C, Hun S, Ketter T A, et al. Unsupervised connectivitybased thresholding segmentation of midsagittal brain MR images[J]. Computers in Biology and Medicine, 1998, 28(3): 309~338.
  • 7McInerney T, Terzopoulos D. Deformable models in medical image analysis: A survey [J]. Medical Image Analysis, 1996, 1(2): 91~108.
  • 8Orphanoudakis S C, Tziritas G, Haris K. A hybrid algorithm for the segmentation of 2D/3D images [A]. In: Proceedings of International Conference on Information Processing in Medical Imaging, Brest, 1995. 385~386.
  • 9Pohle R, Toennies K D. Segmentation of medical images using adaptive region growing [A]. In: Proceedings of SPIE,Boston, Massachusetts, 2001, 4322: 1337~1346.
  • 10Pohle R, Tonnies K D. A new approach for model-based adaptive region growing in medical image analysis [A]. In:Proceedings of the 9th International Conference on Computer Analysis and Patterns, Warsaw, 2001. 238~246.

共引文献89

同被引文献13

  • 1姜慧研,司岳鹏,雒兴刚.基于改进的大津方法与区域生长的医学图像分割[J].东北大学学报(自然科学版),2006,27(4):398-401. 被引量:16
  • 2陶文兵,金海.一种新的基于图谱理论的图像阈值分割方法[J].计算机学报,2007,30(1):110-119. 被引量:58
  • 3Arifin A Z, Asano A. linage Segmentation by Histogram Thresholding Using Hierarchical Cluster analysis[J]. Pattern Recognition Letters, 2006, 27(13): 1 515-1 521.
  • 4Carevic D, Caelli T. Region-based Coding of Color Images Using Karhunen Loeve Transform[J]. Graphical Models and Image Processing, 1997, 59(1): 27-38.
  • 5Zucker S W. Region Growing: Childhood and Adolescence[J]. Computer Graphics and Image Processing, 1976, 5(3): 382-399.
  • 6Jiaxin C, Sen L. Amedical Image Segmentation Method Based on Watershed Transform[C].The Fifth International Conference on Computer and Infomaation Technology,IEEE, 2005.
  • 7Canny J. A Computational Approach to Edge Detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986 (6): 679-698.
  • 8Astley SM,Gilbert FJ. Computer-aided deteclion in mammog- raphy [J]. Clin Radiol,2004,59 (5) :390-399.
  • 9Deng X. Du G. Editorial:3D segmenta|ion in the clinic: a grand challenge I] liver tumor segmentation[ C 1. Pro ceed- ings of MICCA1 Workshop on 31) Segmentation in the Clin- ic:a Grand Challenge II[M].New York, USA: MIC-CAI, 2008 : 1-4.
  • 10姜慧研,张晔.基于改进的区域生长法的气管与支气管分割[J].东北大学学报(自然科学版),2009,30(2):191-194. 被引量:8

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部