期刊文献+

新疆地方性肝包虫CT图像纹理特征的分类研究 被引量:6

Classification of Xinjiang Local Liver Hydatid CT Image based on Texture Feature
下载PDF
导出
摘要 纹理特征是图像分析的重要线索,灰度共生矩阵法提取的纹理特征具有很好的鉴别和分类能力。本文运用灰度共生矩阵分析新疆地方性肝包虫CT图像并进行特征提取,对图像进行尺寸归一、去噪和增强的预处理,计算0°,45°,90°和135°方向的能量、熵、对比度、相关性和逆差矩的均值,构成特征向量,并进行统计分析,用最大类间距法获取图像分类的主要特征,同时使用判别分析法对特征的分类能力进行评价。实验结果表明,灰度共生矩阵法提取的特征在统计分析中存在差异,最大类间距计算获得的特征能提高图像分类的准确率,一定程度上有助于对肝包虫病CT图像进行分类和检索。 Texture feature is an important clue of image analysis.Texture features extracted by GLCM has a good ability to identify and classify.In this paper,for CT images we normalizing scale,removing the noise by median filter,enhancing by contrast limited adaptive histogram equalization,and then we use the gray level co-occurrence matrix(GLCM) to calculation the mean of angular second moment,entropy,inertia moment,correlation and inverse difference moment in 0 °,45 °,90 ° and 135 ° directions to constitute the texture feature vector.To get main features of the image classification,we use statistical and maximum classification distance analyze the feature vector,and then evaluate the feature's classification ability by discriminant analysis.The result show that feature extraction by gray level co-occurrence matrix is significant in statistical analysis,features calculated by maximum classification distance can improve the accuracy of image classification and to some extent contribute to the CT images of liver hydatid disease classification and retrieval.
出处 《科技通报》 北大核心 2013年第1期42-46,53,共6页 Bulletin of Science and Technology
基金 国家自然科学基金项目(30960097) 国家自然科学基金项目(81160182)
关键词 灰度共生矩阵 新疆地方性肝包虫 特征提取 最大类间距 gray level co-occurrence matrix Xinjiang Local Liver Hydatid feature extraction maximum classification distance
  • 相关文献

参考文献14

二级参考文献106

共引文献288

同被引文献59

  • 1徐潘辉,林峰.DICOM医学数字图像格式与BMP通用图像格式转换软件的设计与实现[J].医疗设备信息,2006,21(3):1-5. 被引量:23
  • 2王李冬,邰晓英,巴特尔.基于小波变换纹理分析的医学图像检索[J].中国医疗器械杂志,2006,30(2):102-105. 被引量:6
  • 3王惠明,史萍.图像纹理特征的提取方法[J].中国传媒大学学报(自然科学版),2006,13(1):49-52. 被引量:77
  • 4王立功,刘伟强,于甬华,王广志.DICOM医学图像文件格式解析与应用研究[J].计算机工程与应用,2006,42(29):210-212. 被引量:26
  • 5MinhN. Do and Martin Vetterl.i Wavelet-based Texture Retrieval Using Generalized Gaussian Density and Kul- back-Leiber distance [J] .IEEE Image Processing, 2002, 11(12): 1135-1138.
  • 6National Electrical Manufacturers Association,Digital Imaging and Communications in Medicine(DICOM),USA,Virginia,Rosslyn:National Electrical Manufacturers Association,2009.
  • 7Padhani A R,Liu G,Koh D M,et al. Diffusion-Weighted Magnetic Resonance Imaging as a Cancer Biomarker: Consensus and Recommendations. Neoplasia, 2009, 11:i02-125.
  • 8Kilickesmez O, Bayramoglu S, Inci E, et al. Value of apparentdiffusion coefficient measurement for discrimination of focal benign and malignant hepatic masses. Mvd Imaging Radiat Oncol, 2009, 53: 50-55.
  • 9Vestvik I K, Egeland T A, Gaustad J V, et al. Assessment of micro- vascular density, extracellular volume fraction, and radiobiological hypoxia in human melanoma xenografts by dynamic contrast- enhanced MRI. Magn Resort Imaging, 2007, 26: 1033-42.
  • 10Taouli B, Koh D M. Diffusion-weighted MR imaging of the liver. Radiology, 2010, 254: 47-66.

引证文献6

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部