期刊文献+

基于多GPU的千万级高维空间实时检索 被引量:8

Research on Ten Million of High Dimensional Data Real-time Retrieval by Multi-GPUs
下载PDF
导出
摘要 海量高维数据的近邻检索一直是多媒体信息领域的重要研究课题。本文提出一种基于多GPU的并行高维空间距离检索排序算法,通过并行优化空间距离计算及排序过程,并充分利用GPU硬件特性和众多的流处理器单元,算法能实现百万级的高维数据的实时检索。在此基础上,研究并利用多GPU架构,提升并行效率,拓展实时数据查询的数据规模。实验结果表明,本文算法可达到千万级别高维数据的实时精确检索,极大地拓展了高维检索的应用范围。 Near neighbor searching is always one of important research fields in the field of multimedia information,especially for massive high-dimensional data.In this paper,we present a fast high-dimensional data retrieval method based on multi-GPUs.By parallel optimizing distance calculation and sort,and extremely utilizing the features of GPU and its numerous stream processors,our algorithm can realize real-time index search for millions of high-dimensional data.Base on this,the architecture of multi-GPUs is studied and utilized to improve its parallel efficiency and extend the searching data scale.Experiment shows that our method can realize real-time accurate searching for ten million of high-dimensional data, which will greatly extend application fields of high-dimensional retrieval.
出处 《科技通报》 北大核心 2013年第1期118-123,共6页 Bulletin of Science and Technology
基金 国家自然科学青年基金(61103171) 中小企业创新基金(10C26213304161) 浙江省教育厅基金(Y200805962)
关键词 高维数据 近邻检索 CUDA 并行计算 high-dimensional data near neighbor searching CUDA parallel computation
  • 相关文献

参考文献15

  • 1Weber R,Schek H-J,Blott S. A Quantitative Analysis and Performance Study for Similarity-Search Methods in High Dimensional Spaces[A].1998.194-205.
  • 2Berchtold S,Kriegel C,Hriegel H. The Pyramid-Tree:Breaking the Curse of Dimensionality[A].1998.142-153.
  • 3Ferhatosmanoglu H,Tuncel E,Agrawal D. Vector Approximation Based Indexing for Non-uniform High Dimensional Data sets[A].New York,2000.202-209.
  • 4董道国,刘振中,薛向阳.VA-Trie:一种用于近似k近邻查询的高维索引结构[J].计算机研究与发展,2005,42(12):2213-2218. 被引量:10
  • 5庄毅,翁建广,庄越挺,吴飞.一种基于双重距离尺度的高维索引结构[J].浙江大学学报(工学版),2007,41(3):380-385. 被引量:3
  • 6Indyk P,Motwani R. Approximate Nearest Neighbors:Towards Removing the Curse of Dimensionality[A].1998.604-613.
  • 7Indyk P,Datar M,Immorlica N. Locality-Sensitive Hashing Scheme Based on p-Stable[A].2004.253-262.
  • 8Ravichandran D,Pantel P,Hovy E. Randomized Algorithms and NLP:Using Locality Sensitive Hash Function for High Speed Noun Clustering[A].2004.622-629.
  • 9Bawa M,Condie T,Ganesan P. LSH Forest:Self-Tuning Indexes for Similarity Search[A].2005.651-660.
  • 10Andoni A,Indyk P. Efficient algorithms for substring near neighbor problem[A].2006.1203-1212.

二级参考文献15

  • 1A. Guttman. R-trees: A dynamic index structure for spatial searching. ACM SIGMOD Int'l Conf. Management of Data,Boston, MA, 1984.
  • 2T. Sellis, N. Roussopoulos, C. Faloutsos. The R^+ tree: A dynamic index for multidimensional objects. The 13th Int'l Conf.Very Large Databases, Brighton, England, 1987.
  • 3N. Beckmann, H. P. Kriegel, R. Schneider, et al. The R^*-tree: An efficient and robust access method for points and rectangles. The SIGMOD Conf, Atlantic City, NJ, 1990.
  • 4N. Katayama, S. Satoh. The SR-tree: An index structure for high dimensional nearest neighbor queries. The ACM SIGMOD Int'l Conf. Management of Data, Tucson, Arizon, USA, 1997.
  • 5R. Weber, H. J. Schek, S. Blott. A quantitative analysis and performance study for similarity-search methods in highdimensional spaces. The 24th Int'l Conf. Very Large Databases,New York, USA, 1998.
  • 6Y. Sakurai, M. Yoshikawa, S. Uemura, et al. The A-tree: An index structure for high-dimensional spaces using relative approximation. The 26th VLDB Conf, Cairo, Egypt, 2000.
  • 7BOHM C,BERCHTOLD S,KEIM D.Searching in high-dimensional spaces:index structures for improving the performance of multimedia databases[J].ACM Computing Surveys,2001,33(3):322-373.
  • 8GUTTMAN A.R-tree:A dynamic index structure for spatial searching[C]∥ACM SIGMOD International Conference on Management of Data.Boston:ACM,1984:47-54.
  • 9BECKMANN N,KRIEGEL H P,SCHNEIDER R,et al.The R*-tree:An efficient and robust access method for points and rectangles[C]∥SIGMOD International Conference on Management of Data.Boston:ACM,1990:322331.
  • 10BERCHTOLD S,KEIM D A,KRIEGEL H P.The X-tree:An index structure for high-dimensional data[C]∥22th International Conference on Very Large Data Bases.Boston:ACM,1996:28-37.

共引文献10

同被引文献49

引证文献8

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部