期刊文献+

微清蛋白中间神经元在氯胺酮致大鼠精神分裂样表现中的作用 被引量:4

Role of parvalbumin interneurons in ketamine-induced psychosis-like responses in rats
下载PDF
导出
摘要 目的微清蛋白(parvalbumin,PV)中间神经元功能失调可能与多种精神疾患发病相关,文中探讨PV中间神经元在氯胺酮致大鼠精神分裂样表现中的作用。方法 36只Wistar雄性大鼠随机均分为3组:等渗盐水组(S组)、氯胺酮5 mg/kg组(K1组)、氯胺酮30 mg/kg组(K2组);连续用药5 d,1次/d。最后1次给药后30 min及60 min,通过敞箱实验观察大鼠自主活动,并记录给药后60 min内的刻板行为评分。行为学实验结束后,取大鼠前额皮层,检测PV中间神经元的改变。结果与S组比较,K2组大鼠给药后30 min及60 min自主活动均明显增强,刻板行为评分显著增高,符合精神分裂症大鼠表现,PV阳性中间神经元数量显著减少(P<0.05)。K1组大鼠仅在给药后30 min出现自主活动增强(P<0.05),其他指标则无显著变化(P>0.05)。结论氯胺酮致精神分裂样表现可能与PV阳性中间神经元数量减少有关。 Objective The dysfunction of parvalbumin (PV) interneurons may contribute to the pathogenesis of various psychiatric disorders. This study was to explore the effect of PV interneurons in ketamine-indueed psychosis-like responses in rats. Methods Thirty-six male Wistar rats were equally randomized into three groups : saline ( S), ketamine 5 mg/kg ( K1 ), and ketamine 30 mg/kg ( K2), and medicated qd for 5 days continuously. Locomotor activities were observed at 30 and 60 rain after the last administration by open field test, and the scores of stereotyped behavior within 60 min were recorded. Immunohistochemistry was employed to detect the change of PV positive interneurons in the prefrontal cortex immediately after ethologic measurement. Results Compared with the S group, the K2 group showed significantly increased locomotor activities and scores of stereotyped behavior at both 30 and 60 min after medication, which were consistent with the psychotic performance of schizophrenia rats, but remarkably reduced numbers of PV-positive interneurons ( P 〈 0.05 ), while the K1 group exhibited enhanced locomotor activities only at 30 rain ( P 〈 0.05 ), with no other statistically significant differences ( P 〉 0.05 ). Conclusion The reduction of PV-positive interneurons may play an important role in ketamine-induced psychosis-like responses in rats.
出处 《医学研究生学报》 CAS 北大核心 2013年第1期9-11,共3页 Journal of Medical Postgraduates
基金 国家自然科学基金(30872424) 全军"十二五"科研基金(CWS11J017)
关键词 氯胺酮 精神分裂症 微清蛋白 中间神经元 Ketamine Schizophrenia Parvalbumin Intemeuron
  • 相关文献

参考文献14

  • 1Morgan CJ, Rossell SL, Pepper F, et al. Semantic priming after ketamine acutely in healthy volunteers and following chronic self-administration in substance users[J]. Biol Psychiatry, 2006,59(3):265-272.
  • 2Mouri A, Noda Y, Enomoto T, et al. Phencyclidine animal models of schizophrenia: Approaches from abnormality of glutamatergic neurotransmission and neurodevelopment[J]. Neurochem Int, 2007,51(2-4):173-184.
  • 3Codett PR, Honey GD, Fletcher PC. From prediction error to psychosis:Ketamine as a pharmacological model of delusions[J]. J Psychopharmacol, 2007,21(3):238-252.
  • 4Zhang ZJ, Reynolds GP. A selective decrease in the relative density of parvalbumin-immunoreactive neurons in the hippocampus in schizophrenia[J]. Schizoph Res, 2002,55(1-2):1-10.
  • 5Tomiya M, Fukushima T, Kawai J, et al. Alterations of plasma and cerebrospinal fluid glutamate levels in rats treated with the N-methyl-D-aspartate receptor antagonist, ketamine[J]. Biomed Chromat, 2006,20(6-7):628-633.
  • 6Venncio C, Magalhes A, Antunes L, et al. Impaired spatial memory after ketamine administration in chronic low doses[J]. Curr Neuropharmacol, 2011,9(1):251-255.
  • 7Sohal VS, Zhang F, Yizhar O, et al. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance[J]. Nature, 2009,459(7247):698-702.
  • 8张建新,张会欣,李兰芳,张勤增,李永辉.L-硝基精氨酸对局灶性脑缺血大鼠脑组织氨基酸含量的影响[J].医学研究生学报,2007,20(3):259-262. 被引量:2
  • 9Berdel B, Morys' J. Expression of calbindin-D28k and parvalbumin during development of rat′s basolateral amygdaloid complex[J]. Int J Dev Neurosci, 2000,18(6):501-513.
  • 10Markram H, Toledo-Rodriguez M, Wang Y, et al. Interneurons of the neocortical inhibitory system[J]. Nat Rev Neurosci, 2004,5(10):793-807.

二级参考文献40

  • 1Franks NP,Lieb WR.Molecular and cellular mechanisms of gen-eral anaesthesia[J].Nature,1994,367(6464):607-614.
  • 2Tranynelis SF,Wollmuth LP,McBain CJ,et al.Glutamate re-ceptor ion channels:structure,regulation,and function[J].Pharmacol Rev,2010,62(3):405-496.
  • 3Monyer H,Burnashev N,Laurie DJ,et al.Developmental andregional expression in the rat brain and functional properties offour NMDA receptors[J].Neuron,1994,12(3):529-540.
  • 4Perez-Otano I,Schulteis CT,Contractor A,et al.Assembly withthe NR1 subunit is required for surface expression of NR3A-con-taining NMDA receptors[J].Neurosci,2001,21(4):1228-1237.
  • 5He S,Ma J,Liu N,et al.Early enriched environment promotesneonatal GABAergic neurotransmission and accelerates synapsematuration[J].Neurosci,2010,30(23):7910-7916.
  • 6Shimizu-Okabe C,Yokokura M,Okabe A,et al.Layer-specificexpression of Cl-transporters and differential[Cl-]i in newbornrat cortex[J].Neuroreport,2002,13(18):2433-2437.
  • 7Ben-Ari Y.Excitatory actions of GABA during development:the na-ture of the nurture[J].Nat Rev Neurosci,2002,3(9):728-739.
  • 8Zou X,Patterson TA,Sadovova N,et al.Potential neurotoxicityof ketamine in the developing rat brain[J].Toxicol Sci,2009,108(1):149-158.
  • 9Ikonomidou C,Bosch F,Miksa M,et al.Blockade of NMDA re-ceptors and apoptotic neurodegeneration in the developing brain[J].Science,1999,283(5398):70-74.
  • 10Scallet AC,Schmued LC,Slikker W Jr,et al.Developmentalneurotoxicity of ketamine:morphometric confirmation,exposureparameters,and multiple fluorescent labeling of apoptotic neurons[J].Toxicol Sci,2004,81(2):364-370.

共引文献2

同被引文献36

  • 1张慧琳,李乐之.三种国外产后抑郁量表应用的比较分析[J].中华护理杂志,2007,42(2):186-188. 被引量:45
  • 2Murrough JW, Iosifescu DV, Chang LC, et al. Antidepressant efficacy of ketamine in treatment-resistant major depression: a two-site randomized controlled trial[J]. Am J Psychiatry, 2013, 170(10): 1134-1142.
  • 3Zhang GF, Wang N, Shi JY, et al. Inhibition of L-arginine-nitric oxide pathway mediates the antidepressant effects of ketamine on rats in the forced swimming test[J]. Pharmacol Biochem Behav, 2013, 110: 8-12.
  • 4Xu SX, Zhou ZQ, Li XM, et al. The activation of adenosine monophosphate-activated protein kinase in rat hippocampus contributes to the rapid antidepressant effect of ketamine[J]. Behav Brain Res, 2013, 253: 305-309.
  • 5Sequeira A, Mamdani F, Ernst C, et al. Global brain gene expression analysis links glutamatergic and GABA ergic alterations to suicide and major depression[J]. PLoS One, 2009, 4(8): 6585.
  • 6Lee PH, Perlis RH, Jung JY, et al. Multi-locus genome-wide association analysis supports the role of glutamatergic synaptic transmission in the etiology of major depressive disorder[J]. Transl Psychiatry, 2012, 2: 184.
  • 7Trudeau VL, Kah O, Chang JP, et al. The inhibitory effects of (gamma)-aminobutyric acid (GABA) on growth hormone secretion in the goldfish are modulated by sex steroids[J]. J Exp Biol, 2000, 203(9): 1477-1485.
  • 8De Vry J, Schreiber R, Melon C, et al. 5-HT1A receptors are differentially involved in the anxiolytic- and antidepressant-like effects of 8-OH-DPAT and fluoxetine in the rat[J]. Eur Neuropsychopharmacol, 2004, 14(6): 487-495.
  • 9Li N, Lee B, Liu RJ, et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists[J]. Science, 2010, 329(5994): 959-964.
  • 10Li N, Liu RJ, Dwyer JM, et al. George Aghajanian, and Ronald S. Duman Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure[J]. Biol Psychiatry, 2011, 69(8): 754-761.

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部