期刊文献+

Banach空间中间意义下的渐近k-严格伪压缩映象不动点的迭代逼近 被引量:2

Approximation of Fixed Points of Asymptotically k-strict Pseudocontractive Mapping in the Intermediate Sense in Banach Space
原文传递
导出
摘要 设E是实Banach空间,C是E的非空闭凸子集,T:C→C是一致L-Lipschitz的中间意义下的渐近k-严格伪压缩映象且∑∞n=1γn<∞,任取一点x0∈E,{xn}是根据xn+1=(1-αn-βn)xn+αnTnxn+βnun定义的具误差的修改的Mann迭代序列,若F(T)非空有界,在对参数的一些适当限制条件下,得到了{xn}强收敛于T的一个不动点的充要条件是lim infn→∞D (xn,F(T))=0;去掉F(T)有界的条件后对参数进行同样的限制,得到了根据xn+1=(1-αn)xn+αnTnxn定义的修改的Mann迭代序列{xn}强收敛于T的一个不动点的充要条件是lim infn→∞D (xn,F(T))=0。 Let E be a real Banach space and C be a nonempty closed convex subset of E. T: C→C is a uniformly L-Lipscbitz as-ymptotically k-strict pseudocontractive mapping in the intermediate sense andE be any given point,the modified Mann iterative sequence with errors defined byis nonempty andbounded, under some appropriate restricted conditions, a necessary and sufficient condition for {xn} converges strongly to a fixedpoint of T is lira inf E After removing the condition that F(T) is hounded, under the same restricted conditionson the parameters, the modified Mann iterative sequence {xn } defined byconverges strongly to a fixedpoint of T if and only if lim in D(xn, F(T) ) =0
出处 《重庆师范大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第1期53-58,共6页 Journal of Chongqing Normal University:Natural Science
基金 国家自然科学基金(No.11001289)
关键词 BANACH空间 一致L-Lipschitz映象 中间意义下的渐近k-严格伪压缩映象 不动点 MANN迭代 误差 Banach space uniformly L-Lipschitz mapping asymptotically k strict pseudocontractive mapping in the intermediatesense fixed point Mann iterative sequence error
  • 相关文献

参考文献10

  • 1Goebel K,Kirk W A. A fixed point theorem for asymptotically nonexpansive mappings[J].Proceedings of the American Mathematical Society,1972,(01):171-174.
  • 2Kirk W A. Fixed point theorems non-Lipschitzian mappings of asymptotically nonexpansive type[J].Israel Journal of Mathematics,1974.339-346.
  • 3Chang S S,Kim J K,Kang S M. Approximating fixed points of asymptotically quasi-nonexpansive type mappings by the Ishikawa iterative sequences with mixed errors[J].Dynamic Systems and Applications,2004.179-186.
  • 4向长合.Banach空间上广义渐近拟非扩张型映象不动点的逼近[J].重庆师范大学学报(自然科学版),2005,22(4):6-9. 被引量:8
  • 5胡国英,梁天娟.广义渐近拟非扩张型映象不动点的逼近[J].重庆师范大学学报(自然科学版),2008,25(1):10-13. 被引量:3
  • 6Kim T H,Xu H K. Congvergence of the modified Mann's iteration method for asymptotically strict pseudocontractions[J].Nonlinear Analysis,2008.2828-2836.
  • 7Asplund E. Positivity of duality mappings[J].Bulletin of the American Mathematical Society,1967.200-203.
  • 8Chang S S. Some results for asymptotically pseudocontractive mappings and asymptotically non-expansive mappings[J].Proceedings of the American Mathematical Society,2001,(03):845-853.
  • 9Chang S S. Some problems and results in the study of nonlinear analysis[J].Nonlinear Analysis-Theory Methods and Applications,1997,(07):4197-4208.
  • 10Zhou Y Y,Chang S S. Congvergence of implicit iterative process for a finite family of asymptotically nonexpansive mappings in Banach spaces[J].Numer Funet Anal and Optimiz,2002.911-921.

二级参考文献16

共引文献9

同被引文献24

  • 1苏永福.关于半度量空间中的压缩映象原理[J].纯粹数学与应用数学,1993,9(1):57-64. 被引量:2
  • 2Khan A R, Fukharuddin H, Kuan M A A. An implicit algorithm for two finite families of nonexpansive maps in hyperbolic spaces [ J ]. Fixed Point Theory Appl,2012 ,2012 :54.
  • 3Kohlenbach U. Some logical metatheorems with applications in functional analysis [ J ]. Trans Am Math Soc, 2004,357 ( 1 ) : 89 - 128.
  • 4Leustean L. Nonexpansive iteration in uniformly convex W -hyperbolic spaces [ C ]//Leizarowitz, Mordukhovich, Shafrir A B S I, Zasavski A. Nonlinear Anal Opti I : Nonlinear Anal, Contemporary Math, AMA, 2010,513 : 193 - 209.
  • 5Reich S, Shafrir I. Nonexpansive iterations in hyperbohc spaces [ J ]. Nonlinear Anal, 1990,15:537 -558.
  • 6Goebel K, Reich S. Uniform Convexity Hyperbolic Geometry and Nonexpansive Mappings [ M ]. New York:Marcel Dekker, 1984.
  • 7Bridson N, Haefliger A. Metric Space of Non - Positive Curvature[ M ]. Berlin : Springer - Verlag, 1999.
  • 8Chang S S, Wang L, Joseph H W, et al. Total asymptotically nonexpansive mappings in a CAT (0) space demiclosed principle and A - convergence theorems for total asymptotically nonexpansive mappings in a CAT(0) space[ J]. Appl Math Comput,2012, 219:2611 - 2617.
  • 9Fukharuddin H, Khan A R. Approximating common fixed points of asymptotically nonexpansive maps in uniformly convex Banach space[ J]. Comput Math Appl,2007,53 : 1349 - 1360.
  • 10Gu F, Fu Q. Strong convergence theorems for common fixed points of mnltistep iterations with errors in Banach spaces[ J/OL]. J Inequal App1,2009 ,2009 :819036.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部