期刊文献+

Spatial distribution of picoand nano-phytoplankton and bacteria in the Chukchi Sea in relation to water masses

Spatial distribution of picoand nano-phytoplankton and bacteria in the Chukchi Sea in relation to water masses
下载PDF
导出
摘要 We evaluated the relationships between water masses and pico- and nano-phytoplankton and bacterial abundance in the Chukchi Sea. The abundance of picoplankton ranged from 0.01 ~ 103 cells.mL1 (100 m, station R05) to 2.21 x 103 cells.mL-1 (10 m, station R05) and that of nanoplankton ranged from 0.03 x 103 cells.mL-I (100 m, station R07) to 2.21 ~ 104 cells.mLq (10 m, station R05). The lowest abundance of bacteria in the whole water column (0.21 x 106 cells.mLq) was at 100 m at station R17, and the highest (9.61 x 106 cells.mLL) was at 10 m at station R09. Melting sea ice affected the physical characteristics of the Chukchi Sea by reducing salinity of the surface mixed layer, resulting in greater hydrodynamic stability of the water column. These changes were accompanied by increased bacterial abundance. The warm Pacific water brought nutrients into the Chukchi Sea, resulting in greater abundance of bacteria and nano-phytoplankton in the Chukchi Sea than in other regions of the Arctic Ocean. However, the abundance of pico-phytoplankton, which was related to chlorophyll a concentration, was higher in Anadyr water than in the other two water masses. The structures ofpico- and nanoplankton communities coupled with the water masses in the Chuk- chi Sea can serve as indicators of the inflow of warm Pacific water into the Chukchi Sea. We evaluated the relationships between water masses and pico- and nano-phytoplankton and bacterial abundance in the Chukchi Sea. The abundance of picoplankton ranged from 0.01 ~ 103 cells.mL1 (100 m, station R05) to 2.21 x 103 cells.mL-1 (10 m, station R05) and that of nanoplankton ranged from 0.03 x 103 cells.mL-I (100 m, station R07) to 2.21 ~ 104 cells.mLq (10 m, station R05). The lowest abundance of bacteria in the whole water column (0.21 x 106 cells.mLq) was at 100 m at station R17, and the highest (9.61 x 106 cells.mLL) was at 10 m at station R09. Melting sea ice affected the physical characteristics of the Chukchi Sea by reducing salinity of the surface mixed layer, resulting in greater hydrodynamic stability of the water column. These changes were accompanied by increased bacterial abundance. The warm Pacific water brought nutrients into the Chukchi Sea, resulting in greater abundance of bacteria and nano-phytoplankton in the Chukchi Sea than in other regions of the Arctic Ocean. However, the abundance of pico-phytoplankton, which was related to chlorophyll a concentration, was higher in Anadyr water than in the other two water masses. The structures ofpico- and nanoplankton communities coupled with the water masses in the Chuk- chi Sea can serve as indicators of the inflow of warm Pacific water into the Chukchi Sea.
出处 《Advances in Polar Science》 2012年第4期237-243,共7页 极地科学进展(英文版)
基金 supported by the National Natural Science Foundation of China (Grant no.41076130)
关键词 Arctic Ocean Chukchi Sea BACTERIA pico-phytoplankton nano-phytoplankton Arctic Ocean, Chukchi Sea, bacteria, pico-phytoplankton, nano-phytoplankton
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部