期刊文献+

群作用系统的传递属性的一个注记

A Note of Transitivity of Group Actions
下载PDF
导出
摘要 研究了群作用系统的传递属性,证明了如下结论:设(S,X),(S,Y)是两个群作用的动力系统,Γ族是左正平移不变的和右负平移不变的,π是从(S,X)到(S,Y)的一个半共轭.如果(S,Y)是Γ-传递的且存在x0∈Trans(X),使得π-1(πx0)={x0}.那么(S,X)是Γ-传递的. This article deals with transitivity of group actions. The result is that: let (S,X) and (S, Y) be topological dynamical systems of group actions, let F be left positive translation invariant and right negative translation invariant family, and let π be semi - conjugate from ( S, X) to ( S, Y) . If ( S, Y) is U - transitive and xo E Trans(X) such that π-1 ( πx0 ) = { x0} , then ( S, X) is F - transitive.
出处 《怀化学院学报》 2012年第11期10-13,共4页 Journal of Huaihua University
基金 怀化学院资助项目(HHUY2010-02)
关键词 拓扑半共轭 传递性 Furstenberg族 群作用 Topological semi - conjugation transitivity Furstenberg families group actions
  • 相关文献

参考文献6

  • 1龙雄武,汪火云,陈宇光.半群作用的传递属性[J].广州大学学报(自然科学版),2011,10(2):11-14. 被引量:2
  • 2Huoyun Wang,Xiongwu Long,Heman Fu.Sensitivity and chaos of semigroup actions[J].Semigroup Forum.2012(1)
  • 3Eduard Kontorovich,Michael Megrelishvili.A note on sensitivity of semigroup actions[J].Semigroup Forum.2008(1)
  • 4Balibrea,F,Guirao,J,Oprocha,P.On invariantscrambled sets[].International Journal of Bifurcation andChaos.2010
  • 5Akin,E.Reurrence in Topological dynamical system.Furstenberg Familes and Ellis Actions[].The UniversitySeries in Mathematics.1997
  • 6Ellis,D,Ellis,R,Nerurkar,M.The topologicaldynamics of semigroup actions[].Transactions of theAmerican Mathematical Society.2001

二级参考文献9

  • 1YE Xiang-dong, HUANG Wen, SHAO Song. Topological dynamics[ M]. Beijing: Science Press, 2008.
  • 2ZHANG Jing-zhong, XIONG Jin-cheng. Iterated function and one -dimensional dynamical systems[M]. Chengdu: Sichuan Education Press,1992.
  • 3RUELLE D, TAKENS F. On the naturte of turbulence[J]. Comm Math Phys, 1971, 20: 167-192.
  • 4AKIN E. Recurrence in topological dynamics: Furstenberg families and Ellis Actions [ M ]. New York: Plenum Press, 1997.
  • 5DEVANEY R. An introduction to chaotic dynamical system[ M]. Red Wood City: Addison-Wesley, 1989.
  • 6AKIN E, AUSLANDER J, GLASNER E. The topological dynamics of Elliss Actions [ M 1. New York: Amer Math Soc, 2008.
  • 7KONTOROVICH E, MEGRELISHVILI M. A note on sensitivity of semigroup action[ Jl. Semigroup Forum, 2008, 76: 133-141.
  • 8DAVID B, ROBERT E, MAHESH N. The topological dynamics of semigroup actions [ J ]. Trans Amer Soc, 2000, 353: 1279-1320.
  • 9FURSTENBERG H. Disjointness in ergodic theory, minimal sets and a problem in diophantine approximation [ J ]. Math Syst Theory, 1967,1: 149.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部