期刊文献+

应用改进遗传规划方法的快堆功率控制策略 被引量:4

Fast Breeder Reactor Power Manipulation Strategy Based on Advanced Genetic Programming Approach
下载PDF
导出
摘要 由于快中子增殖反应堆的功率变化与反应性变化会相互影响,因此很难找到一个有明确物理含义的数学模型;而且其衰变功率在非稳态运行条件下,极易引起反应堆功率控制的过冲现象.针对快堆功率控制的这些特点,把改进后的遗传规划方法与反应堆动态周期方程相结合,得到了一个反应性控制的预测模型,同时对该模型进行了仿真验证.验证结果表明,该反应性预测模型的预测值与实测值吻合很好,总反应性的相对误差率甚至不超过1%,从而可以看出在整个控制过程中没有明显的过冲现象出现,模型性能良好. It is difficult to find an unambiguous physical meaning model for fast breeder reactor (FBR), because the interaction between the power variation and the reactivity change is very complex. And under the non-steady condition of decay power, it is easy to appear the over-shooting situation in reactor power manipulation (RPM). According to these RPM characteristics the advanced genetic programming approach (GPA) and dynamic period equa- tion (DPE) were combined, then a predictive reactivity regulation model was obtained. At last, the model was veri-fied through simulation. The results show that the predictive values and measured values are much closed, and the relative error rates of total relativity are all not more than 1%. During the whole RPM, it is obvious that the over- shooting does not appear. So the model has good performance.
出处 《天津大学学报》 EI CAS CSCD 北大核心 2012年第12期1105-1109,共5页 Journal of Tianjin University(Science and Technology)
基金 日本原子力安全协会资助计划NREP(nuclear researchers exchange program)资助项目(FY2010)
关键词 快中子增殖反应堆 反应堆功率控制 反应性过冲 遗传规划方法 动态周期方程 fast breeder reactor reactor power manipulation reactivity over-shooting genetic programmingapproach dynamic period equation
  • 相关文献

参考文献10

  • 1Bernard J A. Studies on the Closed-Loop Digital Control of Multi-Modular Reactors[M].USA:MIT Nuclear Reactor Laboratory,1998.
  • 2Gyun N,Belle R U. Application of model predictive control strategy based on fuzzy identification to an SP-100 space reactor[J].Annals of Nuclear Energy,2006,(02):1467-1478.
  • 3Ramazan C,Burhanettin C. An expert trajectory design for control of nuclear research reactors[J].Expert Sys-tems with Applications,2009,(05):11502-11508.
  • 4Vedat T,Fevzi B. Soft computing technique for power control of Triga Mark-II reactor[J].Expert Systems with Applications,2011,(01):11201-11208.
  • 5谢仲生.核反应堆物理分析[M]西安:西安交通大学出版社,2008.
  • 6Bernard J A. An experimental comparison of reactor power controllers based on the standard and alternate formulations of the dynamic period equation[J].IEEE Transactions on Nuclear Science,1987,(01):548-552.
  • 7Bernard J A. Dynamic period equation:Derivation,relation to inhour equation,and precursor estimation[J].IEEE Transactions on Nuclear Science,1999,(01):433-437.
  • 8云庆夏;王占权;黄光球.遗传算法和遗传规划[M]北京:冶金工业出版社,1997.
  • 9Zhang Mengjie,Gao Xiaoying,Lou Weijun. A new crossover operator in genetic programming for object classification[J].IEEE Transactions on Systems Man and Cybernetics(Part B):Cybernetics,2007,(05):1332-1343.
  • 10Carlton D,Zhang Mengjie. Execution trace caching for linear genetic programming[A].New Orleans,USA:IEEE Press,2011.1186-1193.

同被引文献14

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部