期刊文献+

OFDM系统中一种双选择性稀疏信道压缩感知方法

A Compressive Sensing Method for Estimating Doubly-Selective Sparse Channels in OFDM Systems
下载PDF
导出
摘要 针对OFDM系统,提出了一种基于压缩感知(CS)的双选择性稀疏信道估计新方法.为解决传统二维插值算法无法准确估计双选择性稀疏信道的问题,通过利用信道在时频域的稀疏特性,将OFDM系统下的双选择性信道模型转化为CS可解的BPIC数学模型,并最终利用基追踪算法对稀疏信道的脉冲冲激响应实现估计.仿真结果显示,新方法能有效减少导频数,提高频谱利用率;在传统的FFT-Linear和FFT-FFT二维联合插值算法无法正确估计出信道响应时,基追踪算法仍能实现对稀疏信道的精确估计. This paper proposed a new sparse channel estimation method based on compressive sensing(CS) in the OFDM system.In order to solve the problem that the conventional two-dimensional interpolation methods fail to make an accurate estimation of doubly-selective sparse channels,the new method fully exploits the sparsity of physical channels in the time-frequency domain and transforms the OFDM channel model into the BPIC model,which can be solved by the compressive sensing algorithms.Finally,the exact estimation of sparse channel is fulfilled by using the BP algorithm.Simulation results show that the new method can significantly reduce the number of pilots and thus improve spectrum efficiency.It is also shown that the BP algorithm can still make an exact estimation of sparse channel when the conventional FFT-Linear and FFT-FFT two-dimensional joint interpolation methods fail to work.
出处 《天津大学学报》 EI CAS CSCD 北大核心 2012年第12期1121-1126,共6页 Journal of Tianjin University(Science and Technology)
基金 天津市科技支撑计划重点资助项目(09ZCKFGX29200)
关键词 信道估计 双选择性信道 稀疏性 OFDM 压缩感知 基追踪 channel estimation doubly-selective channel sparsity OFDM compressive sensing basis pursuit
  • 相关文献

参考文献20

  • 1Raghavan V,Hariharan G,Sayeed A M. Capacity of sparse multipath channels in the ultra-wideband re-gime[J].IEEE Journal of Selected Topics in Signal Processing,2007,(03):357-371.
  • 2Yang B,Cao Z,Letaief K B. Analysis of low-complexity windowed DFT-based MMSE channel esti-mator for OFDM systems[J].IEEE Transactions on Communications,2001,(11):1977-1987.
  • 3Candès E J,Romberg J,Tao T. Robust uncertainty principles:Exact signal reconstruction from highly in-complete frequency information[J].IEEE Transactions on Information theory,2006,(02):489-509.
  • 4Donoho D L. Compressed sensing[J].IEEE Transactions on Information theory,2006,(04):1289-1306.
  • 5Baraniuk R G. Compressive sensing[J].IEEE Signal Processing Magazine,2007,(04):118-120.
  • 6Candès E J,Tao T. Decoding by linear programming[J].IEEE Transactions on Information theory,2005,(12):4203-4215.
  • 7Cotter S F,Rao B D. Sparse channel estimation via matching pursuit with application to equalization[J].IEEE Transactions on Communications,2002,(03):374-377.
  • 8Bajwa W U,Haupt J,Raz G. Compressed chan-nel sensing[A].Princeton,New Jersey,2008.5-10.
  • 9Wu C J,Lin D W. A group matching pursuit algorithm for sparse channel estimation for OFDM transmis-sion[A].Toulouse,France,2006.14-19.
  • 10Qi C H,Wu L N. Digital broadcast channel estimation with compressive sensing[J].Journal of Southeast Uni-versity:English Edition,2010,(03):389-393.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部