期刊文献+

基于CMOS图像传感器的压缩感知成像算法 被引量:4

A Compressive Sensing Imaging Algorithm Based on CMOS Image Sensor
下载PDF
导出
摘要 近年来提出的压缩感知理论将信号采样和压缩同时进行,突破了奈奎斯特采样定理的限制,为低采样高分辨率成像提供了可能.为此,提出了一种基于CMOS图像传感器的压缩感知成像算法,采用并行处理策略对CMOS图像传感器A/D转换前的模拟像素矩阵进行压缩采样,减轻了A/D转换模块的负担,大大降低了CMOS图像传感器的功耗,并且该算法实现电路简单.仿真结果表明,所提算法能快速有效地进行测量值的获取,利用TVAL3算法重构的图像主客观质量较好. Compressive sensing theory proposed in recent years integrates signal acquisition and compression steps,which breaks through the limit of Nyquist sampling theorem and provides possibility for high resolution imaging from low sampling data.A compressive sensing imaging algorithm based on CMOS image sensor was proposed in this paper,which adopts parallel processing strategies to compress and sample the analog pixel matrix prior to A/D conversion of CMOS image sensor.The proposed algorithm can alleviate the burden of A/D conversion module and reduce the power of CMOS image sensor,and moreover,it has a simple implementation circuit.Simulation results show that measurement values can be obtained rapidly and effectively with the proposed algorithm,and the image reconstructed using TVAL3 arithmetic has better subjective and objective quality.
出处 《天津大学学报》 EI CAS CSCD 北大核心 2012年第12期1127-1132,共6页 Journal of Tianjin University(Science and Technology)
基金 国家自然科学基金资助项目(60806010 61101226) 内燃机燃烧学国家重点实验室开放基金资助项目(No.K2011-11)
关键词 压缩感知 CMOS图像传感器 并行处理 TVAL3 compressive sensing CMOS image sensor parallel processing TVAL3
  • 相关文献

参考文献11

  • 1Donoho D L. Compressed sensing[J].IEEE Transactions on Information theory,2006,(04):1289-1306.
  • 2石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:711
  • 3李树涛,魏丹.压缩传感综述[J].自动化学报,2009,35(11):1369-1377. 被引量:205
  • 4Duarte M F,Davenport M A,Takbar D. Single-pixel imaging via compressive sampling[J].IEEE Signal Processing Magazine,2008,(02):83-91.
  • 5Fergus R,Torralba A,Freeman W T. Random Lens Imaging[R].Cambridge,MA:MIT Computer Science and Artificial Intelligence Laboratory (MIT CSAIL),2006.
  • 6Pitsianis N P,Brady D J,Portnoy A. Compres-sive imaging sensors[A].Orlando,Florida,2006.62320A-6231-9.
  • 7Robucci R,Chiu L K,Gray J. Compressive sensing on a CMOS separable transform image sen-sor[A].Las Vegas,Nevada,2008.5125-5128.
  • 8Jacques L;Vandergheynst P;Bibet A.CMOS compressed imaging by random convolution[A]台湾台北,20092877-2880.
  • 9Candes E J,Romberg J K,Tao T. Stable signal recov-ery from incomplete and inaccurate measurements[J].Communications on Pure and Applied Mathematics,2006,(08):1207-1223.
  • 10Li Chengbo. An Efficient Algorithm for Total Variation Regularization with Applications to the Single Pixel Camera and Compressive Sensing[D].Houston:Department of Computational and Applied Mathematics,Rice University,2009.

二级参考文献143

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献840

同被引文献39

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部