期刊文献+

基于多特征融合的SAR图像输电走廊变化检测 被引量:1

Multiple features fusion for SAR image power line corridor changing detection
下载PDF
导出
摘要 传统SAR变化检测使用单一描述来提取多时相SAR图像间的变化信息,没有充分挖掘图像中的多特征信息,导致复杂变化场景下算法检测精度不高.针对这一问题,提出一种基于多种特征融合的SAR图像变化检测方法.该方法首先对多时相SAR图像输电走廊区域进行多种特征提取,并选取合适SAR变化检测的特征,然后在多时相SAR图像中计算每种特征对应的差异图,最后从图像融合的角度分别使用主成分分析法(PCA)和证据推理理论(DST)对这些多特征对应的差异图进行融合并提取最终的变化检测结果.实验结果表明该方法具有较为满意的变化检测效果. The single descriptor is applied to extract change information between muti-temporal SAR images in traditional SAR change detection methods. It does not make full use of the image information, resulting in a drop in detection accuracy especially in complex scene. To solve this problem, a SAR image change detection method based on multiple features fusion was presented in this paper. Firstly, multiple features were extracted from multi-temporal SAR image power line corridor area, and the appropriate SAR change detection characteristics were selected. Then, the corresponding difference maps to each feature channel were further extracted. Finally, from the perspective of image fusion, the main component analysis (PCA) and evidence reasoning the- ory (DST) were separately used to fuse the difference maps corresponding to these features, and meanwhile the final changing detection results are extracted. Experimental results showed the proposed method has satisfactory effectiveness for changing detection.
出处 《电力科学与技术学报》 CAS 2012年第4期57-63,共7页 Journal of Electric Power Science And Technology
基金 国家重点基础研究发展计划("973计划")(2009CB724507-3)
关键词 合成孔径雷达 特征融合 变化检测 输电线路 SAR feature fusion change detection power lines
  • 相关文献

参考文献16

  • 1辛芳芳,焦李成,王桂婷,万红林.基于小波域Fisher分类器的SAR图像变化检测[J].红外与毫米波学报,2011,30(2):173-178. 被引量:9
  • 2张辉,王建国.一种基于主分量分析的SAR图像变化检测算法[J].电子与信息学报,2008,30(7):1727-1730. 被引量:18
  • 3Hachicha S,Chaabane F. Application of DSM theory for SAR image change detection[A].Cairo,Egypt,2009.
  • 4He M;He X F.Urban change detection using coherence and intensity characteristics of multi-temporal SAR imagery[A]陕西西安,2009.
  • 5Wen-jie Wang,Zhong-ming Zhao,Hai-qing Zhu. Objectoriented multi-feature fusion change detection method for high resolution remote sensing image[A].Fairfax,Virginia,USA,2009.
  • 6John R Smith,Shih Fu Chang. Automated binary texture feature sets for image retrieval[A].Atlanta,Georgia,USA,1996.
  • 7Ma W Y,Manjunath B S. Texture features and learning Similarity[A].San Francisco CA,1996.
  • 8Robert M Haralick,Shanmugam K. Texture features for image classification[J].IEEE Transations on Sys Man and Cyb,1973,(06):610-621.
  • 9Cart J R,de Miranda F P. The semivariogram in comparison to the co-occurrence matrix for classification of image texture[J].IEEE Transactions on Geoscience and Remote Sensing,1998,(06):1945-1952.doi:10.1109/36.729366.
  • 10Bujor F,Trouve E,Valet L. Application of logcumulants to the detection of spatiotemporal diseontinuities in multitemporal SAR images[J].IEEE Transactions on Geoscience and Remote Sensing,2004,(10):2073-2084.

二级参考文献44

共引文献381

同被引文献13

  • 1吴华,郭贞,杨国田,柳长安.基于全局自相似描述子的电塔检测[J].华中科技大学学报(自然科学版),2011,39(S2):437-440. 被引量:5
  • 2M di Bisceglie,Galdi C. CFAR detection of extended ob- jects in high-resolution SAR images[J]. IEEE Transati- ons Geosci, Remote Sens, 2005,43 (4) : 833-843.
  • 3Curlander John C,McDonough Robert N. Synthetic ap- erture radar-systems and signal Processing [M] New York: John Wiley and Sons, Inc. ,1991.
  • 4Lee J S. Digital image enhancement and noise filtering by use of local statistics[J]. IEEE Transations Pattern Analysis and Machine Intelligence, 1980,2(2) : 165-168.
  • 5Kuan D T, Sawchuk A A, Strand T C, et al. Adaptive noise smoothing filter for images with signal-dependent noise[J]. IEEE Transations Pattern Analysis and Ma- chine Intelligence, 1985,7 (2) : 165-177.
  • 6Donoho D L, lohnstone I M. Adapting to unknown smoothness via wavelet shirk[J]. Journal of the Ameri- can Statistical Assoc, 1995,90(432) : 1 200-1 224.
  • 7Tsaig Y,Donoho D L. Extensions of compressed sens- ing[J]. Signal Processing, 2006,86(3) ..549-571.
  • 8Novak L M, Halversen S D, Owirka G J. Effects of po- larization and resolution on the performance of a SAR ATR system [J]. The Lincoln Laboratory Journal, 1995, 8(1):49-67.
  • 9Sarabandi K, Park M. Extraction of power line maps from millimeter-wave polarimetrie SAR images [J]. IEEE Transations on Antennas and Propagation,2000, 48(12): 1 802-1 809.
  • 10Yang W, Xu G,Chen J Y , et al. Power transmission towers extraction in polarimetric SAR imagery based on genetic algorithm[C]. ICIC' 06, Lecture Notes in Control and Information Science, Kunming, China, 2006.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部