期刊文献+

基于随机化视觉词典组和上下文语义信息的目标检索方法 被引量:5

Object Retrieval Method Based on Randomized Visual Dictionaries and Contextual Semantic Information
下载PDF
导出
摘要 传统的视觉词典法(Bag ofVisual Words,BoVW)具有时间效率低、内存消耗大以及视觉单词同义性和歧义性的问题,且当目标区域所包含的信息不能正确或不足以表达用户检索意图时就得不到理想的检索结果.针对这些问题,本文提出了基于随机化视觉词典组和上下文语义信息的目标检索方法.首先,该方法采用精确欧氏位置敏感哈希(Exact Euclidean Locality Sensitive Hashing,E2LSH)对局部特征点进行聚类,生成一组支持动态扩充的随机化视觉词典组;然后,利用查询目标及其周围的视觉单元构造包含上下文语义信息的目标模型;最后,引入K-L散度(Kullback-Leibler divergence)进行相似性度量完成目标检索.实验结果表明,新方法较好地提高了目标对象的可区分性,有效地提高了检索性能. There are several problems existing in the conventional bag of visual words methods,such as low time efficiency and large memory consumption, the synonymy and polysemy of visual words, furthermore, they may fail to return satisfactory results if the object region is inaccurate or if the captured object is too small to be represented with discriminative features. An object re- trieval method based on randomized visual dictionaries and contextual semantic information is proposed for the above problems. Firstly, E2LSH (Exact Euclidean Locality Sensitive Hashing) is used, and a group of scalable random visual vocabularies is generat- ed; then, a new object model consisting of contextual semantic information is devised, which is drawn from the visual dements sur- rounding the query object; finally, the Kullback-Leibler divergence is introduced as a similarity measurement to accomplish object re- trieval. Experimental results indicate that the distinguishability of objects is effectively improved and the object retrieval performance method is substantially boosted compared with the traditional methods.
出处 《电子学报》 EI CAS CSCD 北大核心 2012年第12期2472-2480,共9页 Acta Electronica Sinica
基金 国家自然科学基金(No.60872142) 全军军事学研究生课题资助项目
关键词 目标检索 上下文语义信息 精确欧氏位置敏感哈希 随机化视觉词典组 K-L散度 object retrieval contextual semantic information exact Euclidean locality sensitive hashing randomized visual vocabularies Kullback-Leibler divergence
  • 相关文献

参考文献28

  • 1Sivic J,Zisserman A. Video Google:A text retrieval approach to object matching in videos[A].Nice:IEEE Press,2003.1470-1477.
  • 2Jurie F,Triggs B. Creating efficient codebooks for visual recognition[A].Proceedings of International Conference on Computer Vision[A].Beijing:Springer,2005.604-610.
  • 3Nister D,Stewenius H. Scalable recognition with a vocsbulary tree[A].Proceeding of IEEE Conference on Computer Vision and Pattern Recognition[A].New York:IEEE Press,2006.2161-2168.
  • 4Philbin J,Chum O,Isard M. Object retrieval with large vocabularies and fast spatial matching[A].Minneapolis:IEEE Press,2007.1-8.
  • 5Cao Yang,Wang Chang-hu,Li Zhi-wei. Spatial-bag-of-features[A].San Francisco:IEEE Press,2010.3352-3359.
  • 6Rapha(e)l Marée,Philippe Denis,Louis Wehenkel. Incremental indexing and distributed image search using shared randomized vocabularies[A].Philadelphia:ACM Press,2010.91-100.
  • 7刘硕研,须德,冯松鹤,刘镝,裘正定.一种基于上下文语义信息的图像块视觉单词生成算法[J].电子学报,2010,38(5):1156-1161. 被引量:41
  • 8Philbin J,Chum O,Isard M. Lost in quantization:improving particular object retrieval in large scale image databases[A].Anchorage:IEEE Press,2009.278-286.
  • 9Van G J C,Veenman C J,Smeulders A W M. Visual word ambiguity[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,(32):1271-1283.
  • 10Wang Jing-yan,Li Yong-ping,Zhang Ying. Bag-of-features based medical image retrieval via multiple assignment and visual words weighting[J].IEEE Transactions on Medical Imaging,2011,(11):1-17.

二级参考文献74

  • 1张利彪,周春光,马铭,刘小华.基于粒子群算法求解多目标优化问题[J].计算机研究与发展,2004,41(7):1286-1291. 被引量:225
  • 2吴洪,卢汉清,马颂德.基于内容图像检索中相关反馈技术的回顾[J].计算机学报,2005,28(12):1969-1979. 被引量:52
  • 3于林森,张田文.基于视觉与标注相关信息的图像聚类算法[J].电子学报,2006,34(7):1265-1269. 被引量:6
  • 4Oliva A, Tonalba A. Modeling the shape of the scene:A holistic representation of the spatial envelope[J].International Journal of Computer Vision,2001,42(3) : 145 - 175.
  • 5Vogel J, Schiele B. Semantic modeling of natural scenes for content-based image retrieval[ J]. International Journal of Computer Vision,2007,72(2):133 - 157.
  • 6Nowak E, Jurie F, Triggs B. Sampling strategies for bag-of-features image classification[A]. Proc of European Conference on Computer Vision (ECCV'06) [ C]. Austria: Springer, 2006.490 - 503.
  • 7Van Gemert J, G-eusebroek J, Veenman C, Snoek C, Smeulders A. Robust scene categorization by learning image statistics in context[A]. Proc of Int. Conf. on Computer Vision and Pattern Recognition Workshop (CVPRW'06)[C]. USA. IEEE Computer Society,2006. 105 - 122.
  • 8Fei-Fei L,Perona P.A Bayesian hierarchical model for learning natural scene categories [ A]. Proc. of IEEE Int. Conf. on Computer Vision and Pattern Reeosnition (CVPR'05) [ C]. USA: IEEE Computer Society,2005.524- 531.
  • 9Bosch A,Zisserman A. Scene classification using a hybrid generative/discriminative approach [J].IEEE Trans on Pattern Analysis and Machine Intelligence,2008,30(4) :712 - 727.
  • 10Jingen L, Mubarak S. Scene Modeling Using Co-Clustering [ A ]. Proc of IEEE Int. Conf on Computer Vsion ( ICCV'07) [ C ]. Brazil: IEEE Computer Society 2007.1 - 7.

共引文献95

同被引文献67

  • 1Gao Huilin,Dou Lihua,Chen Wenjie.Image Classification with Bag-of-Words Model Based on Improved SIFT Algorithm[C]//Control Conference (ASCC).2013:1-6.
  • 2Jiang Y,Meng J,Yuan J.Randomized visual phrases for object search[C]//Computer Vision and Pattern Recognition (CVPR).2012:3100-3107.
  • 3Hofmann T.Probabilistic latent semantic indexing[C]//Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval.1999:50-57.
  • 4Blei D M,Ng A Y,Jordan M I.Latent dirichlet allocation[J].Journal of machine Learning research,2003,3:993-1022.
  • 5Wu Lei,Li Mingjing.Visual language modeling for image classification[C]//Proc.of 9th ACM SIGMM International Workshop on Multimedia Information Retrieval.2007:115-124.
  • 6Wu Lei,Hu Yang.Scale-Invariant Visual Language Modeling for Object Categorization[C]//IEEE Transactions on multimedia.2009:286-294.
  • 7Pham T T,Maisonnasse L,Mulhem P,et al.Visual Language Model for Scene Recognition[C]//Proceedings of the Singaporean-French Ipal Symposium.2009:76-85.
  • 8Narayanaswamy S,Barbu S,Siskind J M.A Visual Language Model for Estimating Object Pose and Structure in a Generative Visual Domain[C]//IEEE International Conference on Robotics and Automation.2011:4854-4860.
  • 9Li Mingjing,Ma Weiying.Visual language modeling for image classification.United States Patent.US008126274B2[P].2012.
  • 10Katz S.Estimation of Probabilities from sparse data for the language model component of a speech recognizer[C]//IEEE Tansaction on Acoustics Speech and Signal Proeessing.1997:400-401.

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部