期刊文献+

有限域切比雪夫多项式算法性能测试与分析 被引量:2

The Arithmetic Performance Test and Analysis on Finite Fields Chebyshev Polynomials
下载PDF
导出
摘要 本文在有限域切比雪夫多项式算法的基础上,分别对其密钥协商、公钥加密和数字签名算法进行编程测试。然后结合有限域切比雪夫多项式的性质对实验数据进行分析,并与公钥体系中常用的RSA、Elgamal和ECC算法进行比较,总结出有限域切比雪夫多项式算法具有加密简单,计算量小,处理速度快,存储空间占用小的优势,更加适合于无线公钥加密系统。 Based on finite fields Chebyshev polynomials arithmetic,this paper dose performance test by programming for public key cipher,digit signature and key negotiation arithmetic.Afterwards,combined with the characteristics of finite fields Chebyshev polynomials,analysis of experiment data has been done.And then the results are compared with RSA,Elgamal and ECC which are universally used in PKI,followed by the advantages that ciphering simply,processing quickly,needing little memory etc.At last,it is concluded that finite fields Chebyshev polynomials are more compatible for WPKI than the three illustrated above.
作者 刘亮
出处 《中国传媒大学学报(自然科学版)》 2012年第4期54-58,共5页 Journal of Communication University of China:Science and Technology
关键词 公钥加密 切比雪夫多项式 有限域 性能分析 public key cipher Chebyshev polynomials finite fields performance analysis
  • 相关文献

参考文献7

  • 1Kocarev L,Tasev Z. Public - key encryption based on Chebyshev maps[A].2003.28-31.
  • 2P Bergamo,P D Arco,A D Santis. Security of pub- lic key cryptosystems based on Chebyshev polyno- mials[OL].http://citebase.eprints,org,2004.
  • 3宁红宙;刘云;何德全.基于有限域上Cheby-shev多项式的新公钥加密系统[J].
  • 4刘亮,刘云,宁红宙.公钥体系中Chebyshev多项式的改进[J].北京交通大学学报,2005,29(5):56-59. 被引量:11
  • 5G Maze. Algebraic Methods for Constructing one - way Trapdoor Functions[D].Notre Dame:Univer- sity of Notre Dame,2003.
  • 6Yoshimura T,Kohda T. Resonance properties of Chebyshev chaotic sequences[A].2004.23-26.
  • 7L Fib.kov,J Vyskoc. Practical cryptography -the key size problem:GP after year[J].2001,(11).

二级参考文献5

  • 1Kocarev L, Tasev Z. Public-Key Encryption Based on Chebyshev Maps[A]. Proceedings of the 2003 IEEE International Symposium on Circuits and Systems, Volume 3[C]. New York. IEEE, 2003.28- 31.
  • 2Pina Bergamo, Paolo D' Arco, Alfredo De Santis, et al. Security of Public Key Cryptosysterns based on Chebyshev Polynomials[EB/OL]. http://citebase, eprints, org, 2004-8-25.
  • 3G' erard Maze. Algebraic Methods for Constructing oneway Trapdoor Functions[D]. Notre Dame: University of Notre Dame, 2003.
  • 4Yoshimura T, Kohda T. Resonance Properties of Cheby-shev Chaotic Sequences[A]. Proceedings of the 2004 International Symposium on Circuits and Systems Volume 4[C]. New York. IEEE, 2004.23-26.
  • 5卢铁成.信息加密技术[M].成都:四川科学技术出版社,1989.54-56.

共引文献10

同被引文献19

  • 1L. Law, A. Menezes, M. Qu, et al. An efficient pro- tocol for authenticated key agreement [J]. Designs, Codes and Cryptography, 2003,28 : 119-134.
  • 2刘云.WPKI中有限域切比雪夫多项式算法的设计和实现[D].北京:北京交通大学硕士论文,2006.
  • 3Kocarev L, Tasev Z. Public-key encryption based on Chebyshev maps[C]//Proceedings of the 2003 Interna- tional Symposium on Circuits and Systems, Thailand, 2003 : 28-31.
  • 4Bergamo P, Arco P, Santis A, et al. Security of pub- lic-key cryptosystems based on Chebyshev polynomials [J:. IEEE Trans Circuits Syst, 2005, 52 (7) : 1382- 1393.
  • 5Xiao D, Liao X, Deng S. A novel key agreement proto- col based on chaotic maps[J]. Information Sciences,2007,177(4) : 1136-1142.
  • 6Xiang T, Wong K, Liao X. On the security of a novel key agreement protocol based on chaotic maps[J]. Chaos Solitons Fractals, 2009,40(2) : 672-675.
  • 7Lee C, Chen C, Wu C, et al. An extended chaotic maps-based key agreement protocol with user anonymi- ty[J]. Nonlinear Dynamics, 2012,69(3) : 79-87.
  • 8Debiao He, Yitao Chen, Jianhua Chen. Cryptanalysis and improvement of an extended chaotic maps-based key agreement protocol[J]. Nonlinear Dynamics, 2012, 69(7) : 1149-1157.
  • 9Han S, Chang E. Chaotic map based key agreement with/out clock synchronization [J]. Chaos Solitons Fractals, 2009,39(3) : 1283-1289.
  • 10Hankerson D, Menezes A, Vanstones S. Guide to El- liptic Curve Crypotography[M:. New York, USA: Springer-Verlag, 2004.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部