期刊文献+

G^2连续的圆弧样条曲线插值 被引量:1

G^2 Circular Spline Interpolation Algorithm
下载PDF
导出
摘要 该文提出了一种插值给定型值点及切向的G2连续的圆弧样条曲线构造方法,算法简单,连续阶高于G1连续的传统方法。进一步给出了该文方法构造的圆弧样条曲线整体细分生成算法,应用于数控加工中刀轨路径设计具有重要意义。 This paper presents a G2 circular spline interpolation algorithm in which the data points and their tangents are given.For each data point,we construct an initial circle with a common radius.And then we compute the tangent circles for each pair of adjacent initial circles.At last we select suitable circular arcs from these initial circles and tangent circles,which can generate a G2 circular spline curve.In addition,the whole circular spline curve can be reproduced by subdivision.This is important for designing NC milling tool path.
作者 齐倩 方美娥
出处 《杭州电子科技大学学报(自然科学版)》 2012年第6期45-48,共4页 Journal of Hangzhou Dianzi University:Natural Sciences
基金 国家自然科学基金资助项目(60904070 61272032) 浙江省自然科学基金资助项目(LY12F02002)
关键词 圆弧样条 曲率连续 插值 细分 arc spline curvature continuous interpolation subdivision
  • 相关文献

参考文献9

  • 1董光昌,梁友栋,何援军.样条曲线拟合和双圆弧逼近[J].应用数学学报,1978,1(4):330-340.
  • 2Piegl L. Curve fitting algorithm for rough cutting[ J ]. Computer Aided l)esign1986,18 (2) :79 -82.
  • 3Hoschek J. Circular splines[ J]. Computer Aided Design, 1992,24( 11 ) :611 - 618.
  • 4林杰,潘日晶.数据点列的三圆弧样条插值[J].福建师范大学学报(自然科学版),2007,23(2):20-24. 被引量:1
  • 5孙家昶.样条函数与计算几何[M].北京:科学出版社,1982..
  • 6Meek D S, Walton D J. Approximation of quadratic Bezier curves by arc splines [ J ]. Journal of Computational and Ap- plied Mathematics, 1994,54 (4) : 107 - 120.
  • 7张三元.一种G^2连续的二次曲线样条插值方法[J].计算机辅助设计与图形学学报,2000,12(6):419-422. 被引量:12
  • 8孙家昶.局部坐标下的样条函数与圆弧样条曲线[J].数学学报,1977,20(1):28-40.
  • 9Fang M, Ma W, Wang G. A generalized curve subdivision scheme of arbitrary order with a tension parameter [J]. Com- puter Aided Geometric Design, 2010,27 ( 9 ) : 720 - 733.

二级参考文献11

  • 1[1]Bolton K M.Biarc curves[J].Computer Aided Design,1975,7(2):89-92.
  • 2[4]Piegl Tiller.Biarc approximation of NURBS curves[J].Computer Aided Design,2002,34(11):807-814.
  • 3[5]Park H.Error-bounded biarc approximatin of plannar curves[J].Computer Aided Design,2004,36(12):1241-1251.
  • 4[6]Piegl Tiller.Data approximation using biarcs[J].Engineering with computers,2002,18(1):59-65.
  • 5[7]Yong J H,Hu S M,Sun J G.Bisection algorithm for approximating quadratic Bezier curves by G1 arc splines[J].Computer Aided Design,2000,32(4):253-260.
  • 6[8]Tseng Y J,Chen Y D.Three dimensional biarc approximation of freeform surfaces for machining tool path generation[J].Int J Prod Res,2000,38(4):739-763.
  • 7[9]Meek D S,Walton D J.Planar osculating arc splines[J].Computer Aided Geometric Design,1996,13(7):653-671.
  • 8Li J,CAGD,1990年,7卷,2期,209页
  • 9张三元,梁友栋.G1管状曲面的整体造型方法[J].计算机辅助设计与图形学学报,1999,11(1):4-7. 被引量:11
  • 10张三元.隐式曲线、曲面的几何不变量及几何连续性[J].计算机学报,1999,22(7):774-776. 被引量:12

共引文献38

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部