期刊文献+

基于可靠背景模型的运动目标检测算法 被引量:1

Moving Object Detection Algorithm Based on Reliable Background Model
下载PDF
导出
摘要 该文针对非参数背景模型的构建复杂和计算量大的问题,提出了一种简洁,快速和可靠的非参数背景模型构建方法和更新策略。首先通过MeanShift密度核函数来估计得到背景影响因素的估计值;然后通过对收敛点聚类,得到带权重的聚类中心;最后通过更新可靠背景模型和对运动目标轮廓提取,得到运动目标。实验结果表明算法可以在混乱运动对象的视频中提取出清晰的背景,能准确检测出运动目标,对光照。 In order to save the problem of the complex and computationally intensive non-parametric background model,in this paper proposes a simple,rapid and reliable non-parametric background model and updating strategies.Firstly,using MeanShift density kernel function to estimate the value of the background influencing factors;Secondly,through clustering the convergence points,and gets the cluster centers with its weights;Finally,by updating the reliable background model and extraction the contour of moving objects,gets moving objects.Experimental results show that the algorithm can extract a clear background of video without moving objects in the chaos environment,and can accurately detect moving objects with strong robustness of light,noise and a slight camera shake.
出处 《杭州电子科技大学学报(自然科学版)》 2012年第6期85-88,共4页 Journal of Hangzhou Dianzi University:Natural Sciences
基金 浙江省重大科技专项基金资助项目(C03015-4)
关键词 可靠背景模型 背景影响因素 密度核函数 运动目标检测 reliable background model background influencing factors density kernel function moving object detection
  • 相关文献

参考文献7

  • 1吴思,林守勋,张勇东.基于动态背景构造的视频运动对象自动分割[J].计算机学报,2005,28(8):1386-1392. 被引量:19
  • 2陈春雨;姚秋香;乔玉龙.基于帧差发和边缘检测法的视频分割算法[J]计算机研究与发展,2012(05):24-29.
  • 3谢之宇;蒋晓瑜;汪熙.改进的帧差法在目标匹配中的应用[J]计算机研究与发展,2012(07):33-37.
  • 4Kim C,Hwang J N. Fast and automatic video object segmentation and tracking for content-base dapplicafions[J].IEEE Transactiouson Circuits Systems for Video Technology,2002,(02):122-129.
  • 5Elgammal A M,Duraiswami R,Davis L S. Efficient kernel density estimation using the fast gauss transform with applications to color modeling and tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,(11):1499-1504.doi:10.1109/TPAMI.2003.1240123.
  • 6Liu T,Moore A W,Gray A. Efficient exact k-nn and nonparametric classification in high dimensions[A].2003.265-272.
  • 7Liu Y,Yao H,Gao W. Nonparametric background generation[J].International Conference on Pattern Recognition,2006,(07):916-919.

二级参考文献11

  • 1Neri A., Colonnese S., Russo G., Talone P.. Automatic moving object and background separation. Signal Processing, 1998, 66: 219~232.
  • 2Aach T., Kaup A.. Statistical model-based change detection in moving video. Signal Processing, 1993, 31: 165~180.
  • 3Guo J., Kim J.W., Kuo C.-C. Jay.. Fast and accurate moving object extraction technique for MPEG-4 object-based video coding. In: Proceedings of SPIE Visual Communication and Image Processing, San Jose, CA, 1999, 3653: 1210~1221.
  • 4Tsarg Y., Averbuch A.. Automatic segmentation of moving objects in video sequences: A region labeling approach. IEEE Transactions on Circuits and Systems for Video Technology, 2002, 12(7): 597~612.
  • 5Patras I., Hendriks E.A., Lagendijk R.L.. Video segmentation by map labeling of watershed segments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(3): 326~332.
  • 6Wang D.. Unsupervised video segmentation based on watersheds and temporal tracking. IEEE Transactions on Circuits and Systems for Video Technology, 1998, 8(5): 539~546.
  • 7Kim C., Hwang J.N.. Fast and automatic video object segmentation and tracking for content-based applications. IEEE Transactions on Circuits Systems for Video Technology, 2002, 12(2): 122~129.
  • 8Sonka M., Hlavac V., Boyle R.. Image Processing, Analysis, and Machine Vision. Second Edition. USA: Brook/Cole Publishing, 1998.
  • 9Kass M., Witkin A., Terzopoulos D.. Snakes: Active contour models. International Journal of Computer Vision, 1988, 1(4): 321~331.
  • 10Williams D.J., Shah M.. A fast algorithm for active contours and curvature estimation. CVGIP: Image Understanding, 1992, 55(1): 14~26.

共引文献18

同被引文献10

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部