期刊文献+

关于离散信源滑动相对熵的一个小偏差定理

A small deviation theorem for the moving relative entropy of discrete sources
下载PDF
导出
摘要 通过引入任意离散随机序列联合分布相对于乘积参考分布的滑动相对熵概念,建立了任意相依离散随机变量序列滑动相对熵的一个小偏差定理。 A small deviation theorem for the moving relative entropy of arbitrary dependent discrete random variable sequence is established by using the relative entropy of arbitrary discrete random sequence' s joint distribution respect to reference product distribution.
作者 董云
出处 《阜阳师范学院学报(自然科学版)》 2012年第4期5-8,共4页 Journal of Fuyang Normal University(Natural Science)
基金 安徽工业大学青年教师科研基金项目(QZ201218)资助
关键词 滑动似然比 滑动相对熵 小偏差定理 movlng likelihood ratio moving relative entropy small deviation theorem
  • 相关文献

参考文献8

  • 1Jain N C. Tail probabilities for sums of independent Ba-nach space valued random variables[J].ProbabilityTheory and Related Fields,1975.155-166.
  • 2Caposhkin V F. The law of large numbers for moving av-erages of independent random[J].MathematicheskieZametki,1987,(01):124-131.
  • 3Mason D M. An extended version of the Erdos-R e nyistrong law of large numbers[J].Annals of Probability,1989,(01):257-265.
  • 4Liu W. Relative entropy densities and a class of limittheorems or the sequence of m-value random variables[J].Annals of Probability,1990,(02):829-839.
  • 5唐健,汪忠志.关于—混合序列的若干强极限定理[J].安徽工业大学学报(自然科学版),2009,26(3):313-317. 被引量:3
  • 6孟飞,黄继红,陈文波.整值随机序列滑动平均的小偏差定理[J].安徽工业大学学报(自然科学版),2012,29(1):89-91. 被引量:2
  • 7Lai T L. Summability methods for independent identical-ly distributed random variblesf[J].Proceedings of the A-merican Mathematical Society,1974,(02):253-261.
  • 8汪忠志,杨卫国.关于随机序列滑动平均的若干强偏差定理[J].工程数学学报,2011,28(5):702-706. 被引量:10

二级参考文献22

  • 1Bradley R C. On the spectral density and asymptotic normality of weakly dependent random fields [J]. J. Theoret. Probab., 1992, 5(2):355-373.
  • 2Bryc W, Smolenski W. Moment conditions for almost sure convergence of weakly correlated random variables [J].Proc Amer. Math. Soc., 1993,199 (2):629-635.
  • 3Goldie C M, Greenwood P E. Variance of set-indexed sums of mixing random variables and weak convergence of set-indexed processes [J].Ann. Probab., 1986,14(3):817-839.
  • 4Yang S C, Some moment inequalities for partial sums of random variables and their applications[J].Chinese Sci. Bull.,1998,43(17): 1823-1827.
  • 5Wu Q Y, Jiang Y Y. Some strong limit theorems for p-mixing sequences of random variables [J]. Statist. Probab. Lett., 2008,78: 1017-1023.
  • 6Peligrad M, Gut A. Almost-sure results for a class of dependent random variables [J].J.Theoret. Probab., 1999,12(1):87-104.
  • 7Gan S X. Almost sure convergence for ρ-mixing random variable sequences [J]. Statist. Probab. Lett., 2004,67:289-298.
  • 8Utev S, Peligrad M. Maximal inequalities and an invariance principle for a class of weakly dependent random variables [J].J. Theoret. Probab., 2003,16(1):101-115.
  • 9Lai T L. Summability methods for independent identically distributed random varibles[J]. Proceedings of tile American Mathematical Society, 1974, 45(2): 253-261.
  • 10Shepp L A. A limit law of concerning moving averages[J]. The Annals of Mathematical Statistics, 1964, 35(1): 424-428.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部