期刊文献+

基于证据支持矩阵的特征权重融合的风电机组故障诊断 被引量:3

Fault Diagnosis of Wind Turbine Based on Feature Weight Fusion Method with Evidence Support Matrix
下载PDF
导出
摘要 针对风电机组齿轮箱故障特征的不确定性、复杂性和多元性的特点,提出基于证据支持矩阵特征权重的融合新方法,建立故障诊断模型。分析了影响证据冲突的冲突因子和证据距离,利用这两个因子构造证据支持度矩阵;求解了该证据支持度矩阵最大特征值对应的特征向量,并将此作为证据的权重,利用证据组合公式进行融合;最后将其用于风电机组齿轮箱故障诊断。实验结果表明,该方法可较好提高风电机组齿轮箱故障诊断的效率和准确率。 In view of uncertainty, complexity and diversity in the fault characteristics of the wind power unit's gearbox, a method of feature weight fusion based on evidence support matrix is proposed to construct the model. Two factors, the conflict coefficient and evidence distance, are analyzed, which affect the evidence conflict. An evidence support matrix is constructed. The char- acteristic vector related to the maximum eigenvalue of the matrix is calculated as an evidence weight. The evidence weights are fused using the evidence combination formula. The method is applied to fault diagnosis of a wind turbine gearbox. The results show that the proposed method can enhance efficiency and accuracy of the fault diagnosis of wind turbine gearbox.
出处 《上海电机学院学报》 2012年第5期281-286,共6页 Journal of Shanghai Dianji University
基金 国家自然科学基金项目资助(60772006) 上海市教育委员会重点学科资助(J51901) 上海市教育委员会科研创新项目资助(13YZ140) 上海市自然科学基金项目资助(11ZR1413900)
关键词 风电机组 故障诊断 证据理论 证据距离 冲突因子 wind power unit fault diagnosis evidence theory evidence distanceconflict coefficient
  • 相关文献

参考文献8

二级参考文献53

共引文献182

同被引文献14

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部