期刊文献+

基于确定性重采样的粒子滤波算法 被引量:1

Particle Filter Algorithm Based on Deterministic Resampling
下载PDF
导出
摘要 复杂背景下的运动目标跟踪往往要面对非线性非高斯问题,粒子滤波算法在非线性非高斯模型中的良好处理能力,使其得到广泛的应用.引入重采样方法(SIR)解决粒子退化问题的同时导致了样本枯竭.针对上述问题,文中提出了一种融合基本重采样方法和确定性重采样方法的新方法,能有效保持粒子的多样性.通过仿真实验表明,该方法能有效提高粒子滤波算法的准确性. Because of its good performance in the complex background of the non-linear and non Gaussian model,the particle filter algorithm has ben used widely. Resampling(SIR) leads to sampledepletion when it is used to solve degeneracy of particles. In order to solve the problem above, this paper presents a new method which integrates the basic resampling method and the deterministic resampling method. The simulation results show that the new method can not only effectively maintain the diversity of particles but also improve the correctness of the particle filter algorithm.
出处 《西安工业大学学报》 CAS 2012年第11期891-894,共4页 Journal of Xi’an Technological University
基金 陕西省教育厅专项科研计划项目(2010JK592)
关键词 目标跟踪 粒子滤波 确定性重采样 支持粒子 object tracking particle filter deterministic resampling support particle
  • 相关文献

参考文献8

  • 1NGUYEN H T,WORRING M,VAN DEN BOOM GAARD R. Occlusion Robust Adaptive Template Tracking[A].Vancouver,BC,United States:Institute of Electrical and Electronics Engineers Inc,2001.678.
  • 2DOUCET A,GORDON N. Sequential Monte Carlo Methods in Practice[M].New York:springer-verlag,2001.
  • 3HAMMERSLEY J M,MORTON K W. Poor Man's Monte Carlo[J].Journal of the Royal Statistical Society,Series B:Statistical Methodology,1954,(01):232.
  • 4GORDON N,SALMOND D. Novel Approach to Nonlinear and Non-Gaussian Bayesian State Estimation[J].Proceedings of the Institution of Electrical Engineers,1993,(02):072113.
  • 5KWOK C,FOX D,MEILA M. Real Time Particle Filters[J].Proceedings of the IEEE,2004,(92):469.
  • 6薛亚阳,李晋惠,肖锋.基于P-N跟踪器的自适应粒子滤波算法[J].电子设计工程,2011,19(17):153-155. 被引量:2
  • 7SMITH AFM,GELFAND A E. Bayesian Statistics Without Tears:A Sampling Resampling Perspective[J].American Statistician,1992,(46):84.
  • 8Tariq Pervez Sattar,Tiancheng Li,Shudong Sun. Deterministic Resampling:Unbiased Sampling to Avoid Sample Impoverishment in Particle Filters[J].Signal Processing,2012,(92):1637.

二级参考文献8

  • 1Kwok C, Fox D, Meila M. Real-time particle filters[J]. Proceedings of the IEEE, 2004(92):469-84.
  • 2Doucet A, Andrieu C, Fitzgerald W. Bayesian filtering for hidden Markov models via Monte Carlo methods[C]//Proceedings of the 1998 8th IEEE Workshop on Neural Networks for Signal Processing VIII, 1998:194-203.
  • 3Smith AFM, Gelfand AE. Bayesian statistics without tears: A sampling-resampling perspective[J]. The American Statistician, 1992(46):84-88.
  • 4Arulampalam MS, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing. 2002(50):174-88.
  • 5Doucet A, Godsill S, Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering[J]. Statistics and Computing, 2000(10):197-208.
  • 6Kalal Z, Matas J, Mikolajczyk K. P-N learning: Bootstrapping binary classifiers by structural constraints[C]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2010:49-56.
  • 7姚红革,齐华,郝重阳.复杂情形下目标跟踪的自适应粒子滤波算法[J].电子与信息学报,2009,31(2):275-278. 被引量:9
  • 8窦永梅,冀小平,杜肖山.基于粒子群算法和卡尔曼滤波的运动目标跟踪算法[J].现代电子技术,2011,34(8):133-136. 被引量:5

共引文献1

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部