期刊文献+

进化大规模脉冲神经网络的发育方法 被引量:5

A Developmental Method for Evolving Large-Scale Spiking Neural Networks
下载PDF
导出
摘要 通过自然进化得到的脑包含几十亿的神经元和几万亿的神经连接,并表现出复杂的智能行为.受生物脑进化与发育的启发,研究者给出了进化神经网络的发育编码方法,特点是通过基因重用可在较小的基因空间中进行大规模神经网络的快速搜索.以人工基因组模型为框架描述基因调控网络,用基因表达的动态特性表示细胞命运特化的发育过程,提出了一种进化大规模脉冲神经网络的发育方法.该方法的特点在于可以快速有效地发育生成脉冲神经元、神经连接和突触可塑性.相应的食物采集进化实验突现了以神经驱动的自主智能体的智能行为,并验证了该方法对大规模脉冲神经网络的进化能力. The brains contain billions of neurons and trillions of connections through natural evo- lution, and appear rather complex intelligent behavior. Researchers in developmental encoding, which is a branch of evolutionary neural networks motivated by the evolution and development of biological brains, often point out that genetic reuse allows searching the large-scale neural net- works through a lower dimensional genotypic space. Using the artificial genome model as a framework for describing genetic regulatory networks, the dynamics of gene expression can be treated as a model for cell fate specification. We propose a developmental method for evolving large-scale spiking neural networks. The advantage of this method is that it can facilitate fast and efficient development of spiking neurons, neural connections, and synaptic plasticities. The cor- responding evolutionary experiment shows that the intelligent behavior emergences for the neu- rally-driven autonomous agents in a food gathering task. Additionally, it also shows that due to the efficiency of the proposed method, large-scale spiking neural networks can be easily managed thereby making it suitable for long durational evolutionary experiments.
出处 《计算机学报》 EI CSCD 北大核心 2012年第12期2633-2644,共12页 Chinese Journal of Computers
基金 国家自然科学基金(6116500260975020) 甘肃省自然科学基金(1010RJZA019) 西北师范大学科研基金(NWNU-LKQN-10-3)资助~~
关键词 脉冲神经网络 基因调控网络 发育机制 进化算法 自主智能体 spiking neural network genetic regulatory network developmental mechanism evolutionary algorithm autonomous agent
  • 相关文献

同被引文献52

  • 1李小文.汶川震灾中遥感的应急与反思[J].遥感学报,2008,12(6). 被引量:3
  • 2庄镇泉,王熙法,王东生.神经网络与神经计算机[J].电子技术应用,1990,16(4):39-43. 被引量:28
  • 3Schaffer J D,Whitley D,Eshelman L J.Combinations of genetic algorithms and neural networks:A survey of the state of the art[A].Proceedings of International Workshop on Combinations of Genetic Algorithms and Neural Networks[C].Los Alamitos,CA:IEEE Computer Society Press,1992.1-37.
  • 4Yao X.A review of evolutionary artificial neural networks[J].International Journal of Intelligent Systems,1993,8(4):539-567.
  • 5Whitley D.An overview of evolutionary algorithms:Practical issues and common pitfalls[J].Information and Software Technology,2001,43(14):817-831.
  • 6Yao X.Evolving artificial neural networks[J].Proceedings of the IEEE,1999,87(9):1423-1447.
  • 7Stanley K O,Miikkulainen R.A taxonomy for artificial embryogeny[J].Artifical Life,2003,9(2):93-130.
  • 8Roggen D,Federici D,Floreano D.Evolutionary morphogenesis for multi-cellular systems[J].Genetic Programming and Evolvable Machines,2007,8(1):61-96.
  • 9Clune J,Stanley K O,Pennock R T,Ofria C.On the performance of indirect encoding across the continuum of regularity[J].IEEE Transactions on Evolutionary Computation,2011,15(3):346-367.
  • 10Kitano H.Designing neural networks using genetic algorithms with graph generation system[J].Complex Systems,1990,4(4):461-476.

引证文献5

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部