期刊文献+

脐橙溃疡病的一类数字图像识别算法的设计与应用 被引量:1

The Design & Application of a Type of Digital Image Recognition Algorithm for Navel Orange Canker
下载PDF
导出
摘要 将计算机视觉技术应用于脐橙病害的监测,实现了脐橙溃疡病的自动识别.基于HSV颜色模型,分析了脐橙叶子的色调分布;应用数学形态学算子,获取疑似脐橙溃疡病病斑;再利用脐橙溃疡病病斑图像的纹理特征,进行脐橙溃疡病的确认.实验结果表明,提出的方法能较好地识别出脐橙溃疡病病斑. The paper applies computer vision technology to monitor navel orange di seases and pests,and implements the automatic Recognition of the navel orange c anker.Firstly,analyze the hue distribution of navel orange leaves using HSV co lor model.Next,extract suspected navel orange canker lesion using mathematical morphology operators.Finally,confirm the navel orange canker by navel orange canker lesion image texture features.Experimental results show that the propose d method can be used to identify the navel orange canker lesion effectively.
作者 严深海
出处 《赣南师范学院学报》 2012年第6期37-41,共5页 Journal of Gannan Teachers' College(Social Science(2))
关键词 脐橙 溃疡病 颜色模型 数学形态学 纹理 navel orange canker color model mathematical morphology texture
  • 相关文献

参考文献5

二级参考文献24

  • 1焦鸿俊.柑桔抗溃疡病品种叶细胞膜脂组分的研究[J].广西农业大学学报,1996,15(1):63-70. 被引量:3
  • 2华中农业大学主编.果树研究法(第二版)[M].北京:中国农业出版社,1990.
  • 3何秀玲,袁红旭.柑橘溃疡病发生与抗性研究进展[J].中国农学通报,2007,23(8):409-412. 被引量:28
  • 4KIM DW,LEE KH,LEE D.A novel initialization scheme for the fuzzy c-means algorithm for color clustering[J].Pattern Recognition Letters,2004,25:227 -237.
  • 5章毓晋.图像分割[M].北京:科学出版社,2001..
  • 6丁震,胡钟山,杨静宇,唐振民,邬永革.一种基于模糊聚类的图象分割方法[J].计算机研究与发展,1997,34(7):536-541. 被引量:28
  • 7刘佩瑛,张文邦.蔬菜研究法[M].郑州:河南科学技术出版社,1989.9:295-318.
  • 8[美]Donald Hearn,M.Pauline Baker.蔡士杰等译.计算机图形学(第三版)[M].北京:电子工业出版社,2005:568-569.
  • 9Adrian Fora,Alan Roberts.Colour Space Conversions(Technical Report)[M].London:Westminster University,1998.
  • 10Schapire R E. The strength of weak learnability [J]. Machine Learning (S0885-6125), 1990, 5(2): 197-227.

共引文献18

同被引文献30

  • 1郑丽敏,杨旭,徐桂云,郭慧媛,任发政,吴平,朱虹,葛克山.基于计算机视觉的鸡蛋新鲜度无损检测[J].农业工程学报,2009,25(S2):335-339. 被引量:20
  • 2殷涌光,丁筠.基于计算机视觉的食品中大肠杆菌快速定量检测[J].吉林大学学报(工学版),2009,39(S2):344-348. 被引量:10
  • 3图像理解与计算机视觉[M]. 厦门大学出版社, 2002.图像理解与计算机视觉[M]厦门大学出版社,2002.
  • 4Yong Wang,Yongguang Yin,Chaonan Zhang.Selective Cultivation and Rapid Detection of Staphylococcus aureus by Computer Vision[J]. Journal of Food Science . 2014 (3)
  • 5Irwin R. Donis-González,Daniel E. Guyer,Dennis W. Fulbright,Anthony Pease.Postharvest noninvasive assessment of fresh chestnut ( Castanea spp.) internal decay using computer tomography images[J]. Postharvest Biology and Technology . 2014
  • 6Majid Dowlati,Seyed Saeid Mohtasebi,Mahmoud Omid,Seyed Hadi Razavi,Mansour Jamzad,Miguel de la Guardia.Freshness assessment of gilthead sea bream ( Sparus aurata ) by machine vision based on gill and eye color changes[J]. Journal of Food Engineering . 2013 (2)
  • 7Juan Gómez-Sanchis,José D. Martín-Guerrero,Emilio Soria-Olivas,Marcelino Martínez-Sober,Rafael Magdalena-Benedito,José Blasco.Detecting rottenness caused by Penicillium genus fungi in citrus fruits using machine learning techniques[J]. Expert Systems With Applications . 2011 (1)
  • 8Jianwei Qin,Thomas F. Burks,Xuhui Zhao,Nikhil Niphadkar,Mark A. Ritenour.Development of a two-band spectral imaging system for real-time citrus canker detection[J]. Journal of Food Engineering . 2011 (1)
  • 9J. Blasco,N. Aleixos,J. Gómez-Sanchís,E. Moltó.Recognition and classification of external skin damage in citrus fruits using multispectral data and morphological features[J]. Biosystems Engineering . 2009 (2)
  • 10Kangjin Lee,Sukwon Kang,Stephen R. Delwiche,Moon Sung Kim,Sangha Noh.Correlation analysis of hyperspectral imagery for multispectral wavelength selection for detection of defects on apples[J]. Sensing and Instrumentation for Food Quality and Safety . 2008 (2)

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部