期刊文献+

基于改进云粒子群算法的电力系统无功优化研究 被引量:2

Research on Reactive Power Optimization of Power System Based on Improved Cloud Particle Swarm Algorithm
下载PDF
导出
摘要 针对云粒子群算法(CPSO)在电力系统无功优化中易陷入局部极值和存在早熟收敛问题,将基于云数字特征(期望值、熵值、超熵值)编码的云粒子群算法进行了改进:依据解空间的变换将局部搜索和全局搜索相结合,用正态云算子实现粒子的进化学习和交叉变异操作.改进的算法在时间、存储量性能上有了明显的提高,将改进后的算法应用到IEEE30节点标准测试系统和玉门电网进行仿真运算,与其它算法进行比较.其结果表明:该方法在电力系统无功优化中能取得更好的全局最优解,加快了收敛速度,提高了收敛精度. Since the cloud particle swarm optimization is easily trapped in local minimum value and slow in convergence in reactive power optimization of the power system,the cloud particle swarm optimization is improved based on cloud digital features(Ex,En,He),that is,the local search and the global search are combined according to the space transform,and the normal cloud particle is applied to the evolution of the learning process and the variation operation,so as to shorten the time and enlarge the storage of the improved algorithm.The improved algorithm is simulated to IEEE30 bus system and Yumen Power Grid,and it is compared with other algorithms.The result indicates that it can obtain much better global solution,accelerate the convergence speed and improve the convergence accuracy in the reactive power optimization of the power system.
出处 《兰州交通大学学报》 CAS 2012年第6期49-53,共5页 Journal of Lanzhou Jiaotong University
基金 国家自然科学基金(10972095) 甘肃省自然科学基金(1112RJZA051)
关键词 电力系统 无功优化 云粒子群算法 云模型 power system reactive power optimization cloud particle swarm algorithm cloud model
  • 相关文献

参考文献12

二级参考文献114

共引文献1742

同被引文献25

  • 1李辉,张安,赵敏,徐琦.粒子群优化算法在FIR数字滤波器设计中的应用[J].电子学报,2005,33(7):1338-1341. 被引量:37
  • 2Kennedy J,Eberhart R C.Particle swarm optimization[C] .Proc.of IEEE International Conferenee on Neural Networks,Piscataway:IEEE press,1995:1942-1948.
  • 3Eberhart R C,Dobbins R W,Simpson P K.Computational Intelligence PC Tools[M] .Boston:Academic Press,1996.
  • 4Zhao Z, Gao H, Liu Y. Chaotic particle swarm optimi- zation for FIR filter design[C]//Proe, of the 2011 In- ternational Conference on Electrical and Control Engineering(ICECE). Piscataway: IEEE Press, 2011 : 2058- 2061.
  • 5Mandal S, Ghoshal S P,Kar R, et al. Design of optimal linear phase FIR high pass filter using craziness based particle swarm optimization technique [J]. Journal of King Saud University: Computer and Information Sci- ences, 2012,24(1) 83-92.
  • 6Shi Y, Eherhart R. A modfied particle swarm optimizer [-C]//Proa of the 1998 IEEE International Conference on Evolutionary C_xxnputadon. Piscataway: Press, 1998: 69-73.
  • 7Saha S K, Dutta R, Choudhury R, et al. Efficient and accurate optimal linear phase FIR filter design using opposition- based harmony search algorithm [J]. The Scientific World joumal, 2013 1-16.
  • 8苏有良,周德俭,吴兆华,万川.不同映射的混沌免疫进化算法性能分析[J].计算机工程,2010,36(21):222-224. 被引量:11
  • 9张英杰,邵岁锋,Niyongabo Julius.一种基于云模型的云变异粒子群算法[J].模式识别与人工智能,2011,24(1):90-96. 被引量:38
  • 10王永强,周建中,覃晖,卢有麟,张勇传.基于改进二进制粒子群与动态微增率逐次逼近法混合优化算法的水电站机组组合优化[J].电力系统保护与控制,2011,39(10):64-69. 被引量:19

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部