摘要
建立了二自由度含间隙的转子系统非线性动力学模型,将模型的动力学微分方程进行了无量纲化处理,通过数值仿真对系统响应的分岔图、庞加莱截面图等进行研究,分析了系统由周期运动到Hopf分岔,Hopf分岔到混沌再由混沌到周期的演化过程,得到不同参数变化情况下运动状态的改变,对此类旋转机械的设计和在实际工作中故障识别与排除提供理论基础.
A nonlinear dynamic model of rotor system with clearance has been established,then the kinetic differential equation of model being dimensionless is made,and bifurcation diagram and poincare map are researched through numerical simulation to get the evolution process of system from period motion to quasi-periodic motion and then into chaos,then we will get the motion state under different parameter variation.It provides theoretical basis for designing this kind of rotating machine and it is useful to fault identification and trouble shooting in practical work.
出处
《兰州交通大学学报》
CAS
2012年第6期143-146,共4页
Journal of Lanzhou Jiaotong University
关键词
转子系统
数值仿真
分岔
混沌
rotor system
numerical simulation
bifurcation
chaos