期刊文献+

扩展(G′G)—展开法及其在非线性发展方程(组)中的应用 被引量:1

An Extended(G′ G )—expansion Method and its Applications to the Nonlinear Evolution Equations
下载PDF
导出
摘要 以逆Cole-Hopf变换为辅助,从一般Riccati方程的已知解构造一类二阶线性常微分方程的一些新精确解.基于该二阶线性常微分方程及其新精确解,在王的(G′G)—展开法和tanh-coth方法的框架下,推出扩展(G′G)—展开法.为检验方法的直接、简洁和有效性,把它应用到Broer-Kaup方程组,得丰富的新行波解,其中包括双曲函数解、三角函数解、指数函数解和有理函数解.该方法可适用于数学物理中的其它非线性发展方程(组). With the help of the inverse Cole-Hopf transformation, we obtain some new exact solutions of a second order linear ordinary differential equation from known solutions of the general Riccati equation. Based on this second order linear ordinary differential equation and its new exact solutions, an extended ( G'/G )--expansion method is proposed under the framework of Wang's ( G'/G )-expansion method and the tanh-coth method. Being straightforward, concise and effective, the method is applied to the Broer-Kaup equations. As a result, rich new travelling wave solutions are obtained, which contain the hyperbolic function solutions, the trigonometric function solutions, the exponential function solutions and the rational function solutions. This method can be applied to other nonlinear evolution equations in mathematical physics.
出处 《内蒙古民族大学学报(自然科学版)》 2012年第6期625-629,共5页 Journal of Inner Mongolia Minzu University:Natural Sciences
基金 内蒙古高等学校科学研究项目(NJzy08180)
关键词 扩展(G’ G)-展开法 行波解 非线性发展方程(组) Broer-Kaup方程组 Extended ( G'/G )-expansion method Travelling wave solutions Nonlinear evolution equations Broer-Kaup equations
  • 相关文献

参考文献2

二级参考文献69

  • 1M. Ablowitz and P.A. Clarkson, Soliton, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, New York (1991).
  • 2M. Wadati, H. Sanuki, and K. Konno, Prog. Theor. Phys. 53 (1975) 419.
  • 3K. Konno, M. Wadati, Prog. Theor. Phys. 53 (1975) 1652.
  • 4E.J. Parkes and B.R. Duffy, Comput. Phys. Commun. 98 (1996) 288.
  • 5Z.B. Li and Y.P. Liu, Comput. Phys. Commun. 148 (2002) 256.
  • 6E.G. Fan, Phys. Lett. A 277 (2000) 212.
  • 7E.G. Fan, Z. Naturforsch A 56 (2001) 312.
  • 8Z.Y. Yah, Phys. Lett. A 292 (2001) 100.
  • 9B. Li, Y. Chen, and H.Q. Zhang, Chaos, Solitons and Fractals 15 (2003) 647.
  • 10M.L. Wang, Phys. Lett. A 199 (1995) 169.

共引文献22

同被引文献13

  • 1夏娟,崔俭春,尚亚东.一类三阶非线性波动方程丰富的显式精确解[J].广州大学学报(自然科学版),2009,8(6):16-19. 被引量:3
  • 2杨志坚.一类三阶拟线性发展方程的整体解[J].高校应用数学学报(A辑),1998,13(1):31-38. 被引量:4
  • 3WANG M L, ZHOU Y B. Application of homogeneous balance method to exact solutions of nonlinear evolution equation in mathe- matical physics [ J ]. Phys Lett, 1996, A516 (5) :67 - 75.
  • 4郭玉翠.非线性偏微分方程引论[M].北京:清华大学出版社,2012.
  • 5FENG Z S. The first - integegral method to study the Burgers - Korteweg - de Vries equations [ J ]. J Phys : Math Gen, 2002, A35 (2) :343 - 349.
  • 6WANG M L, LI X Z, ZHANG J. The (G'/G) - expansion method and travelling wave solutions of nonlinear evolution equation in mathematical physics[ J]. Phys Lett,2008,A372(4) :417 -423.
  • 7李帮庆,马玉兰.非线性演化系统的符号计算方法[M].北京:科学出版社,2010.
  • 8SHEHATA A R. The traveling wave solutions of the perturbed nonlinear Schorodinger equation and the cubic - quintic Ginzburg Landau equation using the modified (G'/G) -expansion method[J]. Appl Math Comput,2010,217( 1 ) :1 -10.
  • 9曹瑞.G'/G方法构造三维空间中Klein-Gordon-Zakharov方程的精确解[J].贵州大学学报(自然科学版),2012,29(1):20-22. 被引量:2
  • 10孙峪怀,杨少华,王佼,刘福生.非线性Chaffee-Infante反应扩散方程的新精确解[J].四川师范大学学报(自然科学版),2012,35(3):293-296. 被引量:9

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部