期刊文献+

SVR算法在指数预测中的应用研究 被引量:1

Study on the Application of SVR's Algorithm in Index Forecasting
下载PDF
导出
摘要 本文阐述了回归型支持向量机(SVR)的基本结构及训练方法,并在此基础上研究了基于SVR算法的股票指数预测方法。通过应用LS-SVM软件,选用RBF核函数,利用自学模型,对超参数不断进行优化,以加快运算速度,并最终建立了该算法应用于股市预测的模型。通过股票指数的建模与仿真结果表明,支持向量回归机在股票价格的中短期预测以及整体股票趋势预测有比较好的效果。 This paper describes the basic structure and the training methods of Support Vector Regression (SVR), on the basis of which, the Stock Index forecasting methods based on the SVR algorithm was researched. Through the application of IS- SVM, we study on the method of optimizing the super - Parameters with the RBF kernel constantly to speed up the computing speed, and then employ the algorithm to establish a stock market forecast model. The Modeling and the simulation result of Stock Index shows that Support Vector Regression has better effects in the medium- short term forecasting of the stock price as well as the forecasting of the whole tendency of stocks.
出处 《浙江交通职业技术学院学报》 CAS 2012年第4期28-32,共5页 Journal of Zhejiang Institute of Communications
关键词 股票指数 预测 模型 RBF核函数 stock index forecasting model RBF kernel function
  • 相关文献

参考文献6

  • 1Tom Mitchell;曾华军;张银奎.机器学习[M]北京:机械工业出版社,2008.
  • 2Vladimir N.Vapnik;张学工.统计学习理论的本质[M]北京:清华大学出版社,2000.
  • 3Trevor Hastie;Robert Tibshirani;Jerome Friedman;范明;柴玉梅;昝红英.统计学习基础——数据挖掘、推理与预测[M]北京:电子工业出版社,2004.
  • 4SUYKENS J A K,VANDEWALLE J. Least Squares Support Vector Machine Classifiers[J].Neural Processing LeRers,1999,(03):293-300.
  • 5FRANCIS E H T,CAO L J. Modified Support Vector Machines in Financial Time Series Forecasting[J].Neurocomputing,2002,(48):847-861.
  • 6陈希孺;王松桂.近代回归分析--原理方法及应用[M]合肥:安徽教育出版社,1987.

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部