期刊文献+

区间规划问题的Wolfe型对偶理论 被引量:1

Wolfe Duality Theory for Interval-Valued Programming
下载PDF
导出
摘要 讨论了目标函数和约束函数是区间函数的区间规划问题.首先定义了LU最优解的概念,并给出了一类新的Wolfe型对偶模型,在(p,r)-ρ-(η,θ)-不变凸函数定义下证明了弱对偶定理、强对偶定理和逆对偶定理. Interval-valued programming where the objective function and constrict functions are interval-valued functions is considered.The concepts of LU optimal solution to interval-valued programming problem is defined.A new type dual for interval-valued optimization problem is formulated.Under(p,r)-ρ-(η,θ)-invexity assumptions,weak,strong and converse duality results are proved.
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2012年第6期594-597,共4页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 国家自然科学基金(11271367 11101029)资助项目
关键词 不确定优化 区间规划 对偶 (p r)-ρ-(η θ)-不变凸函数 uncertain optimization interval-valued programming duality (p r)-ρ-(η θ)-invexity functions
  • 相关文献

参考文献13

  • 1Ishibuchi H,Tanaka H. Multiobjective programming in optimiza-tion of the interval objective function[J].European Journal of Operational Research,1990,(02):219-225.
  • 2Tong Shaocheng. Interval number and fuzzy number linear pro-grammings[J].Fuzzy Sets and Systems,1994,(03):301-306.
  • 3Ida M. Portfolio selection problem with interval coefficients[J].Applied Mathematics Letters,2003,(05):709-713.
  • 4Huang Yuefei,Baetz B W,Huang Guohe. Violation analysis for solid waste management systems:an interval fuzzy programming approach[J].Journal of Environmental Management,2002,(04):431-446.
  • 5Oliveira C. Multiple objective linear programming models with interval coefficients-an illustrated overview[J].European Journal of Operational Research,2007,(03):1434-1463.
  • 6Alefeld G,Mayer G. Interval analysis:theory and applications[J].Journal of Computational and Applied Mathematics,2000,(1/2):421-464.
  • 7Ding Ke,Huang Nanjing. A new class of interval projection neu-ral networks for solving interval quadratic program[J].Chaos,Solitons and Fractals,2008,(04):718-725.
  • 8Li Wei,Tian Xiaoli. Numerical solution method for general interval quadratic programming[J].Applied Mathematics and Computation,2008,(02):589-595.
  • 9Zhou Houchun,Wang Yiju. Optimality condition and mixed du-ality for interval-valued optimization[J].Fuzzy Info and Eng AISC,2009,(02):1315-1323.
  • 10Wu Hsien Chung. Wolfe duality for interval-valued optimization[J].Journal of Optimization Theory and Applications,2008,(03):497-509.

同被引文献11

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部