期刊文献+

修正的Szász-Mirakjan算子的逼近性质 被引量:1

Some properties of approximation of the modified Szasz-Mirakjan operators
下载PDF
导出
摘要 研究了修正的Szasz—Mirakjan算子对一类绝对连续函数的逼近.首先计算该算子的一阶中心绝对矩,然后估计了另外一项S^*n(∫^trφ(u)du,x),最后利用Bojanic—Cheng方法,结合分析技术得到比较精确的收敛阶及渐近展开式. We investigate the rate of convergence of the operators for some absolutely continuous functions. Inthe first, we compute the first central absolute moment, then the other part S^*n(∫^trφ(u)du,x)is estimated.Lastly, an asymptotically optimal estimate is obtained by Bojanic-Cheng's method and analysis techniques.
作者 连博勇
机构地区 仰恩大学 数学系
出处 《延边大学学报(自然科学版)》 CAS 2012年第4期279-281,共3页 Journal of Yanbian University(Natural Science Edition)
基金 福建省教育厅A类科技项目(JA12360)
关键词 Szasz Mirakjan算子 收敛阶 绝对连续函数 Szasz-Mirakjan operatorsp rate of approximation absolutely continuous functions
  • 相关文献

参考文献7

  • 1Zeng X M,Cheng F. On the rates of approximation of Bernstein type operators[J].Journal of Approximation Theory,2001.242-256.
  • 2Zeng X M,Chen X J. Approximation for bounded functions and absolutely continuous functions by Beta operators[J].Computers and Mathematics with Applications,2006.1585-1592.
  • 3Zeng X M,Cheng F. First order absolute moment of Meye:Konig and Zeller operators and their approximation for some absolutely continuous function[J].Math Slovaca,2011.635-644.
  • 4Cheng F. On the rate of convergence of the Szds:Mirakjan operators for functions of bounded variation[J].Journal of Approximation Theory,1984.226-241.
  • 5Zeng X M. On the rate of convergence of the generalized Szdsz type operators for functions of bounded variation[J].Journal of Mathematical Analysis and Applications,1998.309-325.
  • 6Duman O,Ozarslan M A. Szdsz-Mirakjan type operators providing a better error estimation[J].Applied Mathematics Letters,2007.1184-1188.
  • 7Bojanic R,Cheng F. Rate of convergence of Bernstein polynomials for functions with derivatives of bounded varia-tion[J].J Math AnaIAppl,1989.136-151.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部