期刊文献+

利用自适应滤波星载激光测高仪回波噪声抑制方法 被引量:16

Noise suppression method for received waveform of satellite laser altimeter based on adaptive filter
下载PDF
导出
摘要 具有波形记录功能的星载激光测高仪,通过回波信息解算地表与卫星平台距离和反演地物特性。目前广泛采用的固定宽度高斯滤波方法在抑制回波噪声过程中造成有效信号变形,对提取信号有效参量造成严重干扰。根据分块信号统计特性不同的规律,提出了激光测高仪回波噪声均值和方差的估计方法;根据回波信号的统计特性,设计了一种宽度自适应的高斯滤波器。通过GLAS系统实测回波信号的噪声估计与自适应高斯滤波、高斯拟合,得到的波形处理结果与GLAS官方数据有很好的吻合度,噪声均值估计误差小于0.4个数字化仪单位,有效高斯参数计算误差小于1%。该方法能准确地提取波形参量,为地表高程解算和目标表面信息反演提供有效数据。 For satellite laser altimeter, the range between earth surface and satellite platform could be calculated, and the target characters could be inversed through extracting the parameters of received waveforms. The signal degradations emerge on the noise suppression process of returned pulse using the fixed width Gaussian filter, which influences seriously the extracting of the effective parameters. Based on the different statistical regularities among blocked signal, a new method is presented to estimate the mean and standard deviation of returned waveforms, and a width adaptive Gaussian filter is designed according to the statistical characters of returned pulse. The received digital counts data of GLAS were used to the Noise estimation, adaptive Gaussian filter, and Gaussian fitting were measured by GLAS system. The calculation results accord with GLAS official statstics. The errors of estimated noise mean were less than 0.4 digitized unit, and the effective Gaussian parameter errors are less than 1%. The conclusion is that the returned pulse parameters of laser altimeter could be extracted effectively and accurately through this noise suppression method.
出处 《红外与激光工程》 EI CSCD 北大核心 2012年第12期3263-3268,共6页 Infrared and Laser Engineering
基金 国家"十二五"民用航天技术预先研究项目 国家自然科学基金(40901165) 中央高校基本科研业务费专项资金(274805)
关键词 激光遥感 激光测高仪 分块噪声估计 自适应滤波 laser remote sensing laser altimeter block-based noise estimation adaptive filter
  • 相关文献

参考文献10

  • 1Kurtz N T, Markus T, Cavalieri D J, et al. Comparison of ICESat data with airbome laser altimeter measurements over arctic sea ice [J]. IEEE Transaction on Geoseience and Remote Sensing, 2008, 46(7): 1913-1924.
  • 2Rinne E, Shepherd A, Muir A, et al. A comparison of recent elevation change estimates of the devon ice cap as measured by the ICESat and EnviSAT satellite altimeters [J]. IEEE Transaction on Geoseienee and Remote Sensing, 2011, 49 (6): 1902-1910.
  • 3Burton J L. Laser altimetry measurements from aircraft and spacecraft[J]. Proceedings of the IEEE, 1989, 77(3): 463- 477.
  • 4Gardner C S. Ranging performance of satellite laser altimeters[J]. 1EEE Transaction on Geoscienee and RemoteSensing, 1992, 30(5): 1061-1072.
  • 5赵欣,张毅,张黎明,王相京,赵平建,涂碧海.激光测高仪高斯回波分解算法[J].红外与激光工程,2012,41(3):643-648. 被引量:15
  • 6周辉.星载激光测高仪激光脚点信息反演与定位[D].武汉:武汉大学,2007.
  • 7Gardner C S. Target signatures for laser altimeters: an analysis[J]. Applied optics, 1982, 21(3): 448-453.
  • 8Brenner A C, Jay Zwally H, Bentley C R, et al. Derivation of Range and Range Distributions From Laser Pulse Waveform Analysis for Surface Elevations, Roughness, Slope, and Vegetation Heights[R]. 2003.
  • 9Michelle A H, Jean B M, Bryan J. Decomposition of laser altimeter waveforms [J]. IEEE Transaction on Geoscience and Remote Sensing, 2000, 38(4): 1989-1996.
  • 10Afzal R S, Yu A W, Dallas J L. The geoscience laser altimeter system (GLAS) laser transmitter[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13 (5): 511-531.

二级参考文献3

共引文献14

同被引文献141

引证文献16

二级引证文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部