期刊文献+

低Nb含量Ti-Mo-Nb-Zr-Sn BCC低弹性模量固溶体合金的成分设计 被引量:5

Composition design of Ti-Mo-Nb-Zr-Sn BCC solid solution alloys with low elastic modulus and low Nb content
下载PDF
导出
摘要 依据BCC结构中的"团簇加连接原子"模型确定Ti-Mo二元团簇式[MoTi14]Mo1为基础成分式,根据合金化组元Sn、Zr和Nb与基体Ti的混合焓实现其在基础成分式中的组元替换,从而形成多元成分式[(Mo,Sn)(Ti,Zr)14]Nb1。利用铜模吸铸快冷技术制备d 6 mm合金棒状样品,并对其进行950℃保温2 h并水淬。组织结构分析和拉伸力学性能结果表明:低模量Sn、Zr和Nb分别取代基础成分式中高模量的Mo时形成的三元BCCβ-Ti合金结构稳定,且具有较低的弹性模量;当Mo0.5Sn0.5占据团簇心部,Nb作为连接原子,Zr替代部分Ti时形成的低Nb含量的β-Ti合金[(Mo0.5Sn0.5)(Ti13Zr)]Nb1(Ti68.10Mo5.25Sn6.50Zr9.98Nb10.17,质量分数,%)具有最低的弹性模量(为43 GPa),且断裂强度σb为569 MPa,应变ε为5.6%。 The basic formula of cluster formula [MoTi14]Mo1 in Ti-Mo binary alloys was determined using the clusterplus-glue-atom-model,then a general cluster formula [(Mo,Sn)(Ti,Zr)14]Nb1 was finally formed according to the mixing enthalpies between alloying elements Sn,Zr,Nb and the matrix Ti.The designed alloys were prepared into d 6 mm rods by copper mould suction cast method,and then solution-treated at 950 ℃ for 2 h followed by water-quenching.The structures of alloys were characterized,and the tensile mechanical properties were measured.The experimental results show that the ternary alloys by Sn,Zr and Nb substituting for Mo in cluster center or shell exhibit a BCC β-Ti structure and have lower elastic modulus.A multi-component alloy with the lowest elastic modulus as well as low Nb content is gained at the composition of [(Mo0.5Sn0.5)(Ti13Zr)]Nb1(Ti68.1Mo5.2Sn6.5Nb10.2Zr10.0,mass fraction,%),where a combination of Mo and Sn forms the cluster center Mo0.5Sn0.5,Nb serves as the glue atom,and partial Zr substitutes for Ti in the cluster shell.Its characteristic mechanical parameters are elastic modulus E of 43 GPa,tensile strength σb of 569 MPa and strain ε of 5.6%,respectively.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2012年第12期3378-3385,共8页 The Chinese Journal of Nonferrous Metals
基金 国家自然科学基金资助项目(51171035 50901012)
关键词 Ti-Mo-Nb-Zr-Sn合金 β-Ti固溶体 成分设计 低弹性模量 Ti-Mo-Nb-Zr-Sn alloys β-Ti solid solutions composition design low elastic modulus
  • 相关文献

参考文献20

  • 1NIINOMI M. Mechanical properties of biomedical titanium alloys[J].Materials Science and Engineering A,1998.231-236.
  • 2LONG M,RACK H J. Titanium alloys in total joint replacement:A materials science perspective[J].Biomaterials,1998.1621-1639.
  • 3HAO Y L,LI S J,SUN S Y,YANG R. Effect of Zr and Sn on Young's modulus and superelasticity of Ti-Nb-based alloys[J].Materials Science and Engineering A,2006.112-118.
  • 4HOW F,JU C P,CHERN LIN J H. Structure and properties of cast binary Ti-Mo alloys[J].Biomaterials,1999.2115-2122.
  • 5莱茵斯C;皮特尔斯M;陈振华.钛与钛合金[M]北京:化学工业出版社,20057-8.
  • 6BANIA P J. Beta titanium alloys and their role in the titanium Industry[A].Warrendale,PA:TMS,1993.3-7.
  • 7ABDEL HADY M,HINOSHITA K,MORINAGA M. General approach to phase stability and elastic properties of b-type Ti-alloys using electronic parameters[J].Scripta Materialia,2006.477-480.
  • 8COLLINGS E W. Physical metallurgy of titanium alloys[M].Metals Park,OH:American Society for Metals,1984.69-76.
  • 9DONG Chuang,WANG Qing,QIANG Jian-bing,WANG Ying-min JIANG Nan HAN Guang LI Yan-hui WU Jiang XIA Jun-hai. From clusters to phase diagrams:composition rules of quasicrystals and bulk metallic glasses[J].Journal of Physics D:Applied Physics,2007.273-291.
  • 10WANG Qing,DONG Chuang,QIANG Jian-bing,WANG Ying-min. Cluster line criterion and Cu-Zr-A1 bulk metallic glass formation[J].Materials Science and Engineering A,2007.449-451.

二级参考文献26

共引文献27

同被引文献69

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部