摘要
The effect of silicon doping on the residual stress of CVD diamond films is examined using both X-ray diffraction (XRD) analysis and Raman spectroscopy measurements. The examined Si-doped diamond films are deposited on WC-Co substrates in a home-made bias-enhanced HFCVD apparatus. Ethyl silicate (Si(OC2H5)4) is dissolved in acetone to obtain various Si/C mole ratio ranging from 0.1% to 1.4% in the reaction gas. Characterizations with SEM and XRD indicate increasing silicon concentration may result in grain size decreasing and diamond [110] texture becoming dominant. The residual stress values of as-deposited Si-doped diamond films are evaluated by both sin2ψ method, which measures the (220) diamond Bragg diffraction peaks using XRD, with ψ-values ranging from 0° to 45°, and Raman spectroscopy, which detects the diamond Raman peak shift from the natural diamond line at 1332 cm-1. The residual stress evolution on the silicon doping level estimated from the above two methods presents rather good agreements, exhibiting that all deposited Si-doped diamond films present compressive stress and the sample with Si/C mole ratio of 0.1% possesses the largest residual stress of ~1.75 GPa (Raman) or ~2.3 GPa (XRD). As the silicon doping level is up further, the residual stress reduces to a relative stable value around 1.3 GPa.
采用X射线衍射(XRD)和拉曼光谱2种方法测量了不同硅碳比的CVD掺硅金刚石薄膜的残余应力。采用偏压增强热丝化学气相沉积装置在硬质合金基底上制备了掺硅金刚石薄膜,将正硅酸乙酯以不同的体积比溶解在丙酮中以使得反应气体中的硅碳比从0.1%变化到1.4%,从而控制掺硅金刚石薄膜的掺杂浓度。SEM和XRD的表征结果显示,随着硅掺杂浓度的增加,金刚石薄膜的晶粒尺寸减小,而金刚石(110)的晶面则逐渐占优。XRD法是测量入射角从0°到45°变化时对应的金刚石(220)面XRD衍射峰,并采用sin2ψ方法计算掺硅金刚石薄膜的残余应力。拉曼谱法则是通过检测金刚石特征峰偏移1332cm1位置的偏移量来测量残余应力。2种方法测得的残余应力随着硅掺杂含量的升高显示出良好的一致性,所有的硅掺杂金刚石的残余应力均为压应力,Si/C摩尔比为0.1%的薄膜具有最高的残余应力,为~1.75GPa(拉曼谱法)或~2.3GPa(XRD法)。随着硅掺杂浓度的进一步升高,薄膜的残余应力则稳定在~1.3GPa左右。
基金
Project (51005154) supported by the National Natural Science Foundation of China
Project (12CG11) supported by the Chenguang Program of Shanghai Municipal Education Commission, China
Project (201104271) supported by the China Postdoctoral Science Foundation