期刊文献+

基于LS-SVM的航空发动机喘振故障诊断研究 被引量:7

Study of the Surge Fault Diagnosis of an Aeroengine Based on the LS-SVM(Least Square-Supporting Vector Machine)
原文传递
导出
摘要 利用航空发动机健康状态的气路参数,建立最小二乘支持向量机(Least Squares Support Vector Machine,简称LS-SVM)回归模型,对航空发动机进行状态监控。根据模型监控低压压气机转速(N1)、压比(EPR)和燃油流量(FF)预测值与真实值的相对误差率来分析喘振故障,验证LS-SVM模型作为喘振故障诊断方法的可行性。结果表明,利用LS-SVM模型建立的航空发动机喘振故障模型,监控结果 N1、EPR和FF相对误差率分别达到9%、11%和29%,可以作为快速诊断喘振的依据。 By making use of the gas path parameters of an aeroengine in good health,established was a regressive model based on the least square supporting vector machine for monitoring the state of the aeroengine.The relative error rates between the predictive values and real ones of the rotating speed(N1),pressure ratio(EPR) and fuel oil flow rate(FF) of the low pressure compressor monitored by using the model were based to analyze the surge fault and verify the feasibility of the LS-SVM model as a method for diagnosing the surge fault.It has been found that the N1,EPR and FF relative error rates monitored by using the surge fault model for aeroengines based on the LS-SVM model can hit 9%,11% and 29% respectively,thus can be used as the basis for a quick diagnosis of a surge.
出处 《热能动力工程》 CAS CSCD 北大核心 2013年第1期23-27,107,共5页 Journal of Engineering for Thermal Energy and Power
基金 中国民航大学校内科研基金资助项目(08CAUC-E01)
关键词 发动机 喘振 故障诊断 气路参数 相对误差率 最小二乘支持向量机(LS—SVM) engine,surge,fault diagnosis,gas path parameter,relative error rate,least square supporting vector machine
  • 相关文献

参考文献13

二级参考文献58

  • 1张津.民用航空发动机状态监视和故障诊断系统研究[J].航空动力学报,1994,9(4):339-343. 被引量:21
  • 2Sanz J, Perera R, Huerta C. Fault diagnosis of rotating machinery based on auto-associative neural networks and wavelet transforms[J]. Journal of Sound and Vibration, 2007, 302(4/5): 981-999.
  • 3Peng Z K, Chu F L. Application of the wavelet transform in machine condition monitoring and fault diagnostics[J]. Mechanical Systems and Signal Processing, 2004,18 (2): 199-221.
  • 4Volland S, Kruhl J H. Anisotropy quantification: the application of fractal geometry methods on tectonic fracture patterns of a hercynian fault zone in sardine[J]. Journal of Structural Geology, 2004, 26(8):1499-1510.
  • 5Widodo A, Yang B S. Support vector machine in machine condition monitoring and fault diagnosis[J]. Mechanical Systems and Signal Processing, 2007, 21 (6):2560-2574.
  • 6Hurlebaus S, Gaul L. Smart structure dynamics[J]. Mechanical Systems and Signal Processing, 2006, 20 (2): 255-281.
  • 7Ignatios A, Alexey B, Oleg R. Anomaly induced effects in a magnetic field[J]. Nuclear Physics: B, 2008, 793(1/2) : 246-259.
  • 8Lin H Q, Zhao Y G. Effects of pulse current stimulation on the thermal fatigue crack propagation behavior of CHWD steel[J]. Materials Science and Engineering, 2008, 478(1): 93-100.
  • 9Mueller A, Sokolova S N, Vereshagin V I. Characteristics of lightweight aggregates from primary and recycled raw materials[J]. Construction and Building Materials, 2008, 22(4) : 703-712.
  • 10Asher Y, Yosef P, Yuri L. Spectral and variational prineiples of electromagnetic field excitation in wave guides [J]. Physics Letters: A, 2005,344(1) :18-28.

共引文献89

同被引文献109

引证文献7

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部