期刊文献+

AZ31镁合金阳极氧化膜在3.5%NaCl溶液中不同浸泡时间的腐蚀机制 被引量:4

Corrosion Mechanism of Anodic Oxidation Film on AZ31 Magnesium Alloy in Sodium Chloride Solution
下载PDF
导出
摘要 为了进一步弄清AZ31镁合金阳极氧化膜在NaCl溶液中的腐蚀机制,采用极化曲线、电容测量技术,基于半导体电化学方法研究了其在3.5%NaCl溶液中耐蚀性能与其半导体特性的关系,得到不同浸泡时间下的载流子浓度以及平带电位。结果表明:镁合金阳极氧化膜为N型半导体,随浸泡时间的增加,载流子浓度呈上升趋势,由浸泡10 min时的1.83×1018cm-3增大到96 h时8.60×1020cm-3,平带电位为-1.69~-1.52V,低于镁合金(-1.44~-1.57 V),在浸泡时间为1 h时膜的平带电位最负,耐蚀性最好;镁合金阳极氧化膜的腐蚀失效过程会经过自我修复期-点蚀诱导期-点蚀期-快速腐蚀期4个阶段。 A semiconductor electrochemical method was adopted to measure the polarization curve and capacity of anodic oxidation film on AZ31 Mg alloy in 3.5%NaCl solution so as to reveal the correlation between the corrosion resistance and semiconductor characteristics of the film.The carrier density and flat-band potential of the anodic oxidation film at different immersion time were determined.Results showed that the anodic oxidation film formed on Mg alloy surface was an N-type semiconductor,and its carrier density tended to rise with extending immersion time(it increased from 1.83×1018 cm-3 at 10 min of immersion to 8.60×1020 cm-3 at 96 h of immersion).Besides,the anodic oxidation film had a flat-band potential of-1.69~-1.52 V(lower than that of Mg alloy(-1.44~-1.57 V)),and the anodic oxidation film obtained at an immersion time of 1 h had the lowest flat-band potential and possessed the best corrosion resistance.Moreover,the failure process of the anodic oxidation film could be divided into four stages,including self-repair period,induction period of pitting corrosion,pitting corrosion period and quick corrosion period.
出处 《材料保护》 CAS CSCD 北大核心 2013年第1期8-12,7,共5页 Materials Protection
基金 国家自然科学基金(21273292) 重庆市自然科学基金(CSTC2009BB4214)资助
关键词 阳极氧化 AZ31镁合金 半导体 电容测量技术 极化曲线 NACL溶液 腐蚀机制 anodic oxidation AZ31 magnesium alloy semiconductor capacity measurement polarization curve NaCl solution corrosion mechanism
  • 相关文献

参考文献20

  • 1Yong Y Z,Chuan W Y,Fu H W. Electrochemical behavior of anodized Mg alloy AZ91D in chloride containing aqueous solution[J].Corrosion Science,2005,(11):2816-2831.
  • 2赵景茂,谷丰,赵旭辉,左禹.铝阳极氧化膜的半导体特性[J].物理化学学报,2008,24(1):147-151. 被引量:18
  • 3Peterson M W,Parkinson B A. Photo electrochemical investigation of several Ⅱ-Ⅳ-V2 semiconducting glasses[J].Journal of the Electrochemical Society,1986,(12):2538.
  • 4Sanchez M,Gregori J,Alonso M C. Anodic growth of passive layers on steel rebars in alkaline medium simulating the concrete pores[J].Electrochimica Acta,2006,(01):47.
  • 5Hakiki N B,Boudin S,Rondot B. The electronic structure of passive films formed on stainless steel[J].Corrosion Science,1995,(11):1809.
  • 6Macdonald D D. The history of the Point Defect Model for the passive state:A brief review of film growth aspects[J].Electrochimica Acta,2011,(04):1761-1772.
  • 7王超,钟庆东,周国治,鲁雄刚.环氧树脂/碳钢电极在硫酸溶液中的半导体导电行为[J].物理化学学报,2008,24(7):1277-1282. 被引量:6
  • 8李成涛,程学群,董超芳,李晓刚.Cl^-对690合金腐蚀电化学行为的影响[J].北京科技大学学报,2011,33(4):444-448. 被引量:21
  • 9Ningshen S,Mittal V K. Semiconducting and passive film properties of nitrogen-containing type 316LN stainless steel[J].Corrosion Science,2007.481-496.
  • 10Alves V A,Brett C M A. Influence of alloying on the passive behavior of steels in bicarbonate medium[J].Corrosion Science,2002,(09):1494.

二级参考文献80

共引文献81

同被引文献54

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部