期刊文献+

基于复Shearlet域高斯混合模型的SAR图像去噪 被引量:7

SAR Image De-noising Based on Complex Shearlet Transform Domain Gaussian Mixture Model
原文传递
导出
摘要 结合双树复小波的平移不变性、多分辨率性和剪切波变换的灵活可选的多方向性,提出一种新的图像表达方法——复Shearlet变换。针对合成孔径雷达(Synthetic Aperture Radar,SAR)图像的相干噪声特点,建立了复Shearlet系数域的高斯混合模型(Gaussian Mixture Model,GSM),在此基础上应用贝叶斯最小二乘法进行系数估计,最后进行复Shearlet反变换得到去噪以后的SAR图像。仿真结果和分析表明:本文提出的算法相比其他变换域去噪算法,不仅去噪后的图像的峰值信噪比(Peak Signal to Noise Ratio,PSNR)有所提高,而且去噪后的图像更平滑,且与Shearlet域高斯混合模型相比,本文算法速度快了两倍多。 Using the characteristics of translation invariance,multi-resolution of dual tree complex wavelet transform and the more flexible,multi-selectivity of Shearlet transformation,this paper proposes a new algorithm called complex Shearlet transform.A Gaussian mixture model is introduced in order to capture the local coefficients of the complex Shearlets of synthetic aperture radar(SAR) images.The coefficients are estimated by Bayesian least squares estimator based on the model.Then,an inverse complex Shearlet transform is applied to the modified coefficients to get the SAR image after de-noising.The simulation effect and the analysis of the test results show that,compared with other de-noising methods,this algorithm has a better peak signal to noise ratio(PSNR) and the de-noised images are smoother.The computing speed is more than twice as fast as the method using the Shearlet domain Gaussian mixture model de-noising method.
出处 《航空学报》 EI CAS CSCD 北大核心 2013年第1期173-180,共8页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(60572093) 航空科学基金(201120M5007) 高等学校博士学科点专项科研基金(20050004016)~~
关键词 Shearlet去噪 高斯混合模型 复Shearlet变换 合成孔径雷达图像去噪 相干斑噪声 Shearlet de-nosing Gaussian mixture model complex Shearlet transform SAR image de-nosing speckle noise
  • 相关文献

参考文献21

  • 1Colonna F,Easley G R. Generalized discrete Radon transforms and their use in the ridgelet transform[J].Journal of Mathematical Imaging and Vision,2005,(02):145-165.
  • 2Candès E J,Donoho M N. New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities[J].Communications on Pure and Applied Mathematics,2004,(02):216-266.
  • 3Kingsbury N G. Complex wavelets for shift invariant analysis and filtering of signals[J].Journal of Applied and Computational Harmonic Analysis,2001,(03):234-253.
  • 4Kingsbury N G. Image processing with complex wavelets[J].Philosophical Transactions:Mathematical Physical and Engineering Sciences,1999,(1760):2543-2560.
  • 5Kingsbury N. Shift invariant properties of the dual-tree complex wavelet transform[A].1999.1221-1224.
  • 6Donoho M N,Vetterli M. Contourlets:a directional multiresolution image representation[A].2002.357-360.
  • 7练秋生,陈书贞.基于解析轮廓波变换的图像稀疏表示及其在压缩传感中的应用[J].电子学报,2010,38(6):1293-1298. 被引量:28
  • 8Guo K,Kutyniok G,Labate D. Sparse multidimensional representations using anisotropic dilation and shear operators[A].2005.189-201.
  • 9Easley G,Labate D,Lim W Q. Sparse directional image representation using the discrete Shearlets transform[J].Applied and Computational Harmonic Analysis,2008,(01):25-46.
  • 10Kutyniok G,Lim W Q. Image separation using wavelet and shearlets[J].Lecture Notes in Computer Science,2012.416-430.

二级参考文献48

共引文献81

同被引文献76

  • 1何儒云,王耀南.一种基于小波变换的InSAR干涉图滤波方法[J].测绘学报,2006,35(2):128-132. 被引量:13
  • 2唐波,王卫延.干涉合成孔径雷达抗干扰性能分析[J].电子与信息学报,2006,28(10):1809-1811. 被引量:8
  • 3唐波,郭琨毅,王建萍.合成孔径雷达三维有源欺骗干扰[J].电子学报,2007,35(6):1203-1206. 被引量:11
  • 4Goldstein R M, Zebker H A, Werner C L. Satellite radar interferometry: two-dimension phase unwrapping[J]. Ra- dio Science, 1988, 23(4) : 713-720.
  • 5Prit M D, Shipman J S. Least-square two-dimensional phase unwrapping using FFT's[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(3): 706-708.
  • 6DONOHO D L. De-noising by soft-thresholding[J]. IEEE Trans. on Inform. Theory, 1995, 41 (3): 613-627.
  • 7CHANG S G, YU B, VETTERLI M. Adaptive wavelet thresholding for image denoising and corn pression [J]. IEEE Transaction.; on Image Pro- cessing, 2000, 9(9):1592-1546.
  • 8SENDUR L,SELESNICK I W. Bivariate shrinkage functions forwavelet-based exploiting interseale de- pendency [J]. IEEE Trans. Signal Process'., 2002, 50(11) :2744-2756.
  • 9LUISIER F, BI.U T, UNSER M. A new SURE approach to image denoising: interscale orthonormal wavelet thresholding [ J ]. IEEE Trans. Image Process, 2007,16(3) :593-606.
  • 10PORTILLA J, STRELA V, WAINWRIGHT M J, et al: Image denoising using scale mixtures of Gaussians in the wavelet domain[J]. IEEE Trans. Image Process,2003,12(11):1338- 1351.

引证文献7

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部