摘要
该文研究不一致例子中的多概念学习.所谓不一致的例子是指具有相同的条件属性值却属于不同概念的矛盾例子.该文提出了一个基于粗集扩展模型的数据挖掘算法MIE-RS,能有效处理例子集的不一致性,并且通过确定每个概念的覆盖,即最小相关属性集,为每一概念产生最简的满足给定可信度的产生式规则知识.
: The paper studies multi-concept learning from inconsistent examples.Inconsistent examples are those that have the same values of condition attributes but belong to different concepts.The paper presents a rough set approach MIE-RS to deal with inconsistent examples and build concise production rules for each concept satisfying the given certainty factor by determining the coverings,a minimal set of relevant attributes.
出处
《计算机工程与应用》
CSCD
北大核心
2000年第10期22-23,共2页
Computer Engineering and Applications
基金
国家自然科学基金项目资助
关键词
数据挖掘
粗集扩展模型
不一致例子学习
: Data mining,rough set,rough set extended model,learning from inconsistent examples,coverings