期刊文献+

证券市场的动态网络模型构建与演化规律研究 被引量:4

Dynamic Network Model Construction and Evolution Exploration in Financial Markets
下载PDF
导出
摘要 为分析证券市场的演化规律,提出了动态网络模型构建与拓扑结构分析方法。收集2000~2011年在上海证券交易所上市的884家A股公司的收盘价格数据,采用边权重过滤技术建立了证券市场的动态网络模型,并从网络的基本特征和社团结构探索证券市场的演化规律。通过计算发现,上海证券网络个体之间的平均相关性和聚集程度基本稳定,连通性则呈现增强的趋势。利用加权CNM算法对该动态网络进行社团结构划分,发现网络的最优模块度Q值呈现增大的趋势,这表明该网络的社团结构越来越明显。按行业对这些主要社团进一步分析发现:制造业是整个网络最核心的行业,其次是批发和零售贸易等5个行业。该证券动态网络的建模与演化规律分析方法可以推广到一般复杂网络理论之中。 In order to analyze the evolution of financial markets, the problem of dynamic network model construction and topology analysis s proposed. We use the daily closing prices of portfolio com- prising of 884 A share stocks traded in the Shanghai Stock Exchange in the period 2000-2011 and es- timate financial networks where nodes correspond to stocks and edges correspond to none vanishing correlation coefficients. Then we use the weighted edge filter technology to build a dynamic network model of financial markets, and analyze the network's basic characteristics and community structures to explore the evolution of financial markets. The degree distribution of the dynamic financial network has a power law form, and keeps stable except the connectivity shows a trend of stronger. We use the weighted CNM algorithm to detect community structure of the dynamic network, it can be found that the modularity Q become larger over the time, which showed a strong community structure develop- ment. e further analyze these communities by their industry classification, and it can be revealed that manufacturing is the core of the network industry, followed by wholesale and retail trade of the five industries. The financial dynamic network modeling and analysis of evolution can be extended to the general theory of complex networks.
出处 《管理学报》 CSSCI 北大核心 2013年第2期299-304,共6页 Chinese Journal of Management
基金 国家自然科学基金资助项目(71140015) 中央高校基本科研业务费专项基金资助项目(2011-1a-034)
关键词 证券网络 演化规律 社团结构 加权CNM算法 financial network evolution community structure weighted CNM algorithm
  • 相关文献

参考文献12

  • 1MANTEGNA R,STANLEY H. An Introduction to Econophysics:Correlations and Complexity in Finance[M].Cambridge:Cambridge University Press,2000.
  • 2MANTEGNA R. Hierarchical Structure in Financial Markets[J].the European Physical Journal B,1999,(01):193-197.
  • 3BOGINSKI V,BUTENKO S,PARDALOS P. Statistical Analysis of Financial Networks[J].Computational Statistics and Data Analysis,2005,(02):431-443.
  • 4ONNELA J P,KASKI K,KERTESZ J. Clustering and Information in Correlation Based Financial Net works[J].the European Physical Journal B,2004,(02):353-362.
  • 5GARAS A,ARGYRAKIS P,HAVLINA S. The Structural Role of Weak and Strong Links in a Financial Market[J].the European Physical Journal B,2008,(02):265-271.
  • 6EMMERT-STREIB F,DEHMER M. Influence of the Time Scale on the Construction of Financial Networks[J].PLoSONE,2010,(09):e12884.
  • 7SONG D M,TUMMINELLO M,ZHOU W X. Evolution of Worldwide Stock Markets,Correlation Structure and Correlation Based Graph[J].Physical Review E,2011,(02):026108.
  • 8TSEA C,LIU J,LAU F. A Network Perspective of Stock Market[J].Journal of Empirical Finance,2010,(04):659-667.
  • 9ONNELA J P,SARAMAKI J,HYVONEN J. Analysis of a Large-scale Weighted Network of One-to-one Human Communication[J].New Journal Physics,2007,(06):179.
  • 10GULBAHCE N,LEHMANN S. The Art of CommunityDetection[J].Bioessays:News and Reviews in Molecular,Cellular and Developmental Biology,2008,(10):934-938.

同被引文献49

引证文献4

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部