期刊文献+

石墨烯中Dirac费米子量子输运特性研究 被引量:1

Study on quantum transport properties of graphene Dirac fermions
下载PDF
导出
摘要 利用紧束缚模型的方法研究了石墨烯中Di-rac费米子的势垒相关输运特性,分析了石墨烯中Di-rac费米子的势垒透射率与其入射角度、入射能量、势垒高度和势垒厚度等对应关系。通过理论分析和数值计算表明,石墨烯中Dirac费米子的隧穿系数随矩形势垒的高度和厚度的变化都呈现出明显的振荡效应,隧穿系数与入射角度依赖关系证实了Klein效应。在一定参数下,Dirac费米子的势垒透射率随Dirac费米子入射能量的变化经历从"0"~"1"的突变,显示良好的"电导开关效应",该效应在微电子器件中将有很好的应用前景。 We studied the graphene Dirac fermions barrier-dependence transport properties by using tight-bind ing model method. Taking account of graphene Dirae fermions ineident angle, incident energy and the barrier height or barrier thickness, we analyzed the graphene Dirac fermions transmission coefficient of the barrier. Theoretical analysis and numerical calculations show that the tunneling coefficient of Dirac fermions in graphene appears a clear oscillation effect with height and thickness of the square barrier varing, and the dependence of tunneling coefficient and incident angle confirms Klein effects. Dirac fermions barrier transmission rate vaies form 0 to 1 with certain parameters as Dirac fermions of the incident energy changes. The change of conductance appears good "conductance switching effect", and this effect will have a good application prospect on microelec- tronic devices.
出处 《功能材料》 EI CAS CSCD 北大核心 2013年第2期281-284,共4页 Journal of Functional Materials
基金 上海市自然科学基金资助项目(09ZR1421400) 上海市教委创新资助项目(11YZ138) 解放军理工大学预研基金重点资助项目(20110502)
关键词 石墨烯 Dirac费米子 透射系数 入射能量 入射角度 graphene the Dirac fermions transmission coefficient incident energy the incident angle
  • 相关文献

参考文献2

二级参考文献34

  • 1刘超平,丁建文,颜晓红.单壁碳纳米管环离散谱和连续谱间的转变[J].物理学报,2004,53(10):3472-3476. 被引量:6
  • 2Ritter K A, Lyding J W. [J]. Nanotechnology, 2008,19:6.
  • 3Hummers W S, Offeman R E. [J]. J Am Chem Soc, 1958,80 : 1339-1339.
  • 4Hontoria-Lucas C, Lopez-Peinado A J, Lopez-Gonzcilez J D, et al. [J]. Carbon, 1995,33:1585-1592.
  • 5Nemes-Incze P, Osvathaa Z, Karaarasb K, et al. [J]. Carbon, 2008,46: 1435-1442.
  • 6Stankovich S, Piner R D, Chen X Q, et al. [J]. J Mater Chem, 2006,16:155-158.
  • 7Meyer J C, Geim A K, Katsnelson M I, et al. [J]. Nature, 2007,446:60-63.
  • 8Geim A K,Novoselov K S. [J]. Nat Mater, 2007,6:183- 191.
  • 9Jang B Z, Zhamu A. [J]. J Mater Sci, 2008, 43: 5092- 5101.
  • 10Novoselov K S, Geim A K, Morozov S V, et al.[J]. Science, 2004,306 : 666-669.

共引文献22

同被引文献15

  • 1MorozovSV,NovoselovKS.GiantIntrinsiccarriermobGilitiesingrapheneanditsbilayer[J].PhysicalReviewLetGters,2008,100(1):016602-1-016602-4.
  • 2BonaccorsoF,SunZ,HasanT,etal.GraphenephotonGicsandoptoelectronics[J].NaturePhotonics,2010,4(9):611-622.
  • 3SchwierzF.Graphenetransistors[J].NaturenanotechnolGogy,2010,5(7):487-496.
  • 4LuXuekun,Huang Hui,NikolayNemchuk.Patterningofhighlyorientedpyrolyticgraphitebyoxygenplasmaetching[J].ApplPhysLett,1999,75(2):193-195.
  • 5ShishirKumar,NikosPeltekis.Reliableprocessingofgrapheneusingmetaletchmasks[J].NanoscaleResearchLetters,2011,6(1):390-393.
  • 6WoongSunLim,YiYeonKim,HyeongkeunKim,etal.Atomiclayeretchingofgrapheneforfullgraphenedevicefabrication[J].Carbon,2012,50(2):429-435.
  • 7YuWJ,DuanXF.TunabletransportgapinnarrowbiGlayergraphenenanoribbons[J].SciRep,2013,3:1248-1-1248-5.
  • 8FengJi,LiWenbin,QianXiaofeng,etal.Patterningofgraphene[J].Nanoscale,2012,4(16):4883-4899.
  • 9AmirhasanNourbakhsh,MircoCantoro,TomVosch,etal.BandgapopeninginoxygenplasmaGtreatedgraphene[J].Nanotechnology,2010,21(46):435203-1-435203-9.
  • 10GokusT,NairRR,BonettiA,etal.Makinggrapheneluminescentbyoxygenplasmatreatment[J].Acsnano,2009,3(12):3963-3968.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部