期刊文献+

结合非下采样轮廓波变换和混合阶次图像扩散的图像去噪 被引量:2

Image Denoising Using Hybrid Image Diffusion and Nonsubsampled Contourlet Transform
下载PDF
导出
摘要 通过研究非下采样轮廓波变换理论及其在图像变换中的优点,提出一种新的基于非下采样轮廓波变换的图像去噪方法.该方法首先通过非下采样金字塔分解和非下采样方向滤波器组对待去噪图像进行非下采样轮廓波变换,然后采取不同阶次的图像扩散去噪算法分别对高频部分和低频部分进行去噪处理,最后将经过处理后的系数进行非下采样轮廓波逆变换便可得到去噪后的图像.通过实验结果表明,该方法不仅能有效的去除噪声,而且可以很好地保持边缘信息,整体性能优于近年来一些常见的去噪算法. In this paper, the theoretics of nonsubsampled contourlet transform (NSCT) are studied, as well as its advantages in image transformation. A new algorithm based on nonsubsampled contourlet transform for image denoising is proposed. Firstly, the frequen- cy band on different scale and directon of the original image are acquired by using nonsubsampled directional filter bank and nonsub- sampled pyramid filter bank of NSCT. Secondly, different order of image diffusion algorithms were taken to process the high-frequen- cy and low-frequency parts respectively. Finally, denoised image was obtained by inverse contourlet transformed of these processed coefficients. Experimental results show that the algorithm can not only eliminate the noise effectively, but also preserve edge informa- tion very well. Its overall performance is superior to other denoising algorithms.
作者 董超 王志明
出处 《小型微型计算机系统》 CSCD 北大核心 2013年第2期409-412,共4页 Journal of Chinese Computer Systems
基金 中央高校基本科研业务费专项资金项目(FRF-BR-09-024B)资助
关键词 图像去噪 偏微分方程 图像扩散 非下采样轮廓波变换 image denoising partial differential equations image diffusion nonsubsampled contourlet transform
  • 相关文献

参考文献6

二级参考文献71

共引文献74

同被引文献16

  • 1焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(z1):1975-1981. 被引量:227
  • 2白璘,刘盼芝,李光.一种基于Contourlet变换的高光谱图像压缩算法[J].计算机科学,2012,39(S3):395-397. 被引量:6
  • 3马文波,赵保军,毛二可.高速实时图像压缩系统去条带效应的方法研究[J].系统工程与电子技术,2006,28(12):1783-1785. 被引量:1
  • 4戴维,于盛林,孙栓.基于Contourlet变换自适应阈值的图像去噪算法[J].电子学报,2007,35(10):1939-1943. 被引量:52
  • 5Wainwright M J,Simoncelli E P,Willsky A S.Random cascades on wavelet trees and thek use in modeling and analyzing natural imagery[J].Applied and Computational Harmonic Analysis,2001,11 (1):89-123.
  • 6Donoho D L. Orthonormal ridgelets and linear singulari- ties[R].California:Department of Statistics,Stanford Uni- versity,1998.
  • 7Chang S G,Yu B,Vetterli M.Adaptive wavelets thresh-okting for image denoising and compression[J].IEEE Trans.on Image Processing,2000,9(9):1532-1546.
  • 8Cunha A L,Zhou J,Do M N.The nonsubsampled Cont- ourlet transform:theory,design,and applications[J].lEEE Trans.on Image Processing,2006,15(6):1610-1620.
  • 9Shensa M J.The discrete wavelet transform:wedding the A'Trous and Mallat algorithms [J]. IEEE Trans. on Signal Processing,1992,40(10):2464-2482.
  • 10Starck J L, Candes E J, Donoho D L. The curvelet transform for image denoising[J].IEEE Trans.on Im- age Processing,2002,11 (6):670-684.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部